Three-Dimensional Modelling and Finite Element Analysis of an Ankle External Fixator

Article Preview

Abstract:

The use of ankle external fixator to treat pilon fracture Type III is popular amongst surgeons as it can reduce complications such as non-union and mal-union. Even though configurations of the connecting bars are important, the material also plays a major factor for a successful outcome. In this paper, the Delta external fixator with simulated ankle pilon fractures Type III were modelled and analysed under two different materials; titanium alloy and stainless steel. The finite element model includes tibia, fibula, talus, calcaneus, cuboid, navicular, three cuneiforms and five metatarsals bone. To simulate the pilon fractures Type III, a cutting segment was utilised. The ligaments were assigned with linear spring properties and cartilages were modelled using Mooney-Rivlin hyper-elastic behaviour. The Delta external fixator was designed using a three-dimensional software with two different material properties - titanium alloy and stainless steel. High von Mises stress concentrated at the pin-bone interface with the highest value observed for the titanium fixation. The results also showed less deformation for the stainless steel compared to titanium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-188

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kapukaya, M. Subasi, H. Arslan, T. Tuzuner, Non-reducible open tibial plafond fractures treated with a circular external fixator (is the current classification sufficient for identifying fractures in this area?, Injury. 36 (2005)1480-1487.

DOI: 10.1016/j.injury.2005.05.005

Google Scholar

[2] P. Bartolozzi and F. Lavini, Fractures of the Tibia Pilon, Springer, Milan, (2004).

Google Scholar

[3] S. Teeny, D.A. Wiss, R. Hathaway, A. Sarmiento, Tibial Plafond fractures: Errors, complications, and pitfalls in operative treatment, Ortho. Trans. 14 (1990) 265-271.

DOI: 10.1097/00005131-199004020-00036

Google Scholar

[4] G. S. Cheema, S. Arora, D. Sabat, J. Singla, N. Goel, L. Maini, The results of two-staged operative management of pilon fractures- a review of 25 cases, J. Cli. Ortho. Tra. 2 (2011) 104-108.

DOI: 10.1016/s0976-5662(11)60053-2

Google Scholar

[5] T. M. Williams, J.V. Nepola, T.A. DeCoster, S.R. Hurwitz, D.R. Dirschl, J.L. Marsh, Factors affecting outcome in tibial plafond fractures, Cli. Ortho. Rel. Res. 423 (2004) 93-98.

DOI: 10.1097/01.blo.0000127922.90382.f4

Google Scholar

[6] R. A. Nash, D.M. Nunamaker, R. Boston, Evaluation of a tapere-sleeve transcortical pin to reduce stress at the bone-pin interface in metacarpal bones obtained from horses, Am. J. Vet. Res. 62 (2001) 955-960.

DOI: 10.2460/ajvr.2001.62.955

Google Scholar

[7] Z. Yosibash, N. Trabelsi, C. Milgrom, Realiable simulations of the human proximal femur by high-order finite element analysis validated by the experimental observations, J. Biomech. 40 (2007) 3688-3699.

DOI: 10.1016/j.jbiomech.2007.06.017

Google Scholar

[8] Z. Li, J. -E. Kim, J.S. Davidson, B.S. Etheridge, J.E. Alonso, A.W. Eberhardt, Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study, J. Biomech. 40(2007) 2758-2766.

DOI: 10.1016/j.jbiomech.2007.01.023

Google Scholar

[9] F. H. Netter, Atlas of human anatomy, Third ed., ICON Learning System, USA, (2003).

Google Scholar

[10] H. J. Pfaeffle, M.M. Tomaino, R. Grewal, J. Xu, N.D. Boardman, S.L. Woo, J.H. Herndon, Tensile properties of the interosseous membrane of the human forearm, J. Ortho. Res. 14 (1996) 842-845.

DOI: 10.1002/jor.1100140525

Google Scholar

[11] S. Siegler, J. Block, C.D. Schneck, The mechanical characteristics of the collateral ligaments of the human ankle joint, Foot Ankle. 8 (1988) 234-242.

DOI: 10.1177/107110078800800502

Google Scholar

[12] A. Beumar, W.L. van Hemert, B.A. Swierstra, L.E. Jasper, S.M. Belkoff, A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle, Foot Ankle Intern. 24 (2003) 426-429.

DOI: 10.1177/107110070302400509

Google Scholar

[13] P. C. Liacouras, J. S. Wayne, Computational modeling to predict mechanical function of joints: Application to the lower leg simulation of two cadaver studies, J. Biomech. Eng. 129 (2007) 811-817.

DOI: 10.1115/1.2800763

Google Scholar

[14] J. M. Iaquinto, J. S. Wayne, Computational model of the lower leg and foot/ankle complex: application to arch stability, J. Biomech. Eng. 132 (2010).

DOI: 10.1115/1.4000939

Google Scholar

[15] S. Nakamura, R.D. Crowninshield, R.R. Cooper, An analysis of soft tissue loading in the foot- a preliminary report, Bull. Pros. Res. 18 (1981) 27-34.

Google Scholar

[16] H. -J. Kim, S. -H. Kim, S. -H. Chang, Bio-mechanical analysis of a fractures tibia with composite bone plates according to the diaphyseal oblique fracture angle, Comp. Part B: Eng. 42(2011) 666-674.

DOI: 10.1016/j.compositesb.2011.02.009

Google Scholar

[17] S. Benli, S. Aksoy, H. Havitcioglu, M. Kucuk, Evaluation of bone plate with low-stiffness material in terms of stress distribution, J. Biomech. 14 (2008) 3229-3235.

DOI: 10.1016/j.jbiomech.2008.08.003

Google Scholar

[18] A. A. Vazquez, H. Lauge-Pedersen, L. Lidgren, M. Taylor, Finite element analysis of the initial stability of ankle arthodesis with internal fixation: flat cut versus intact joint contours, Clin. Biomech. 18 (2003) 244-253.

DOI: 10.1016/s0268-0033(02)00207-3

Google Scholar

[19] S. Heintz, E. M. Gutierrez-Farewik, Static optimization of muscle forces during gait in comparison to EMG-to-force processing approcach, Gait Post. 26 (2007) 279-288.

DOI: 10.1016/j.gaitpost.2006.09.074

Google Scholar

[20] F. E. Donaldson, P. Pankaj, A.H.R.W. Simpson, Bone properties affect loosening of half-pin external fixators at the pin-bone interface, Injury. 43 (2012) 1764-1770.

DOI: 10.1016/j.injury.2012.07.001

Google Scholar

[21] S. Gorsse, D. B. Miracle, Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcement, Acta Mat. 51 (2003) 2427-2442.

DOI: 10.1016/s1359-6454(02)00510-4

Google Scholar

[22] C. J. Hyde, W. Sun, S.B. Leen, Cyclic thermo-mechanical material modelling and testing of 316 stainless steel, Intern. J. Pres. Ves. Pip. 87 (2010) 365-372.

DOI: 10.1016/j.ijpvp.2010.03.007

Google Scholar