Modelling the Elastic Constants of Cubic Zirconia Using Molecular Dynamics Simulations

Article Preview

Abstract:

Analysis of structural and mechanical properties of cubic zirconia was conducted using a simulation code (GULP) that is based on the concept of energy minimization. Some mechanical properties of zirconia were computed such as elastic constant tensors, shear modulus, bulk modulus, Youngs modulus and others along the lattice planes. The stiffness constants obtained (C11, C22 and C33) were equal, implying that zirconia is flexible in all directions of the lattice plane. The predicted bulk modulus was 285 GPa with the shear modulus ranging between 78 and 105 GPa. The Youngs modulus of 577 GPa indicates higher ductile behavior as confirmed by the compressibility of 0.0035. The Poissons ratio with values ranging from 0.16 to 0.31 may indicate high anisotropy. Other acoustic features related to mechanical properties of zirconia such as velocity wave ratio, stress matrix dielectric constants and others were also analyzed. All estimations obtained show good agreement to recent measured properties of zirconia.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

387-391

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.M. Logothetis, ZrO2 Oxygen Sensors in Automotive Applications, Adv. in Cera., 3 (1981) 388-392.

Google Scholar

[2] Hans-Heinrich Möbius, On the History of Solid Electrolyte Fuel Cells, J Sol. St. Electrochem., 1 (1997) 2-16.

Google Scholar

[3] N. Yamamoto, S. Sato, R. Takahashi, and K. Inui, Synthesis of 3-buten-1-ol from 1, 4-butanediol over ZrO2 catalyst, J. Molecular Catalysis A, 243-1 (2006) 52–59.

DOI: 10.1016/j.molcata.2005.08.017

Google Scholar

[4] A. I. Ahmed, S. A. El-Hakam, S. E. Samra, A. A. EL-Khouly, and A. S. Khder, Structural Characterization of Sulfated Zirconia and their Catalytic Activity in Dehydration of Ethanol, Colloids and Surfaces A, 317 (2008) 62–70.

DOI: 10.1016/j.colsurfa.2007.09.043

Google Scholar

[5] M. H. Youn, J. G. Seo and S. Park , Hydrogen Production by Auto-thermal Reforming of Ethanol over Ni-Ti-Zr Metal Oxide Catalysts, " Renewable Energy, 34-3 (2009) 731–735.

DOI: 10.1016/j.renene.2008.04.021

Google Scholar

[6] S. Chokkaram and B. H. Davis, Dehydration of 2-octanol over Zirconia Catalysts: Influence of Crystal Structure, Sulfate Addition and Pretreatment, J. Molecular Catalysis A, 118-1 (1997) 89–99.

DOI: 10.1016/s1381-1169(96)00380-9

Google Scholar

[7] M. A Caravaca, J. C Mino, R. A Casali and C. A Ponce, Ab initio Study of the Elastic Properties of Single and Polycrystal TiO2, ZrO2 and HfO2 in the Cotunnite Structure. J. Phys.: Condes. Matter 21(2009) 1 -11.

DOI: 10.1088/0953-8984/21/1/015501

Google Scholar

[8] A.V. Bandura and R.A. Evarestov, Ab Initio Structure Modeling of ZrO2 Nanosheets and Single-Wall Nanotubes. Computational Materials Science, 65 (2012), 395-405.

DOI: 10.1016/j.commatsci.2012.08.001

Google Scholar

[9] R. Catlow, Computer Modelling of Materials: An Introduction. In R. Catlow, and E. Kotomin (Eds. ), Computational Materials First Ed. Netherlands: IOS Press. (2003) 1-30.

Google Scholar

[10] X. Xia, R. Oldman and R. Catlow, Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia. Chemistry of Materials, 21- 15 (2009), 3576-3585.

DOI: 10.1021/cm900417g

Google Scholar

[11] J.D. Gale. GULP: A Computer Program for the Symmetry-Adapted Simulation of Solids. J. Chem. Soc. – Fara. Trans. 93(1997), 629-637.

DOI: 10.1039/a606455h

Google Scholar

[12] S.J. Clark, Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., and Payne, M. C. First Principles Methods Using CASTEP. Zeitschrift Für Kristallographie, 220(2005), 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[13] S. Gennard, Cora, F., and Catlow, C. R. A. Comparison of the Bulk and Surface Properties of Ceria and Zirconia by Ab Initio Investigations. The J. Phy. Chem. B, 103-46(1999, 10158-10170.

DOI: 10.1021/jp9913923

Google Scholar

[14] M. Nadeem, Akhtar, M., Shaheen, R., Haque, M., and Khan, A. Interatomic Potentials for Some Binary Oxides. J. Mate. Sci. Tech., 17-6 (2003) 638-642.

Google Scholar

[15] G. Lewis, and Catlow, C. Potential Models for Ionic Oxides. J. Phy. C: Solid State Physics, 18-6 (1985) 1149-1155.

DOI: 10.1088/0022-3719/18/6/010

Google Scholar

[16] K. M Salah. Elastic Constant Prediction of Nacrite: Molecular Dynamics Simulations. Inter. J. Mini. Engi. & Mine. Proce. 1, 3 (2012), 115-119.

Google Scholar

[17] J. Cai and E. Anastassakis, Elasto-Optical Study of Stabilized Cubic Zirconia, Phys. Rev. B. 51 (1995) 6821-6826.

DOI: 10.1103/physrevb.51.6821

Google Scholar

[18] Stapper, G., Bernasconi, M., Nicoloso, N., and Parrinello, M. Ab Initio Study of Structural and Electronic Properties of Yttria-Stabilized Cubic Zirconia. Phy. Rev. B, 59-2 (1999) 797-804.

DOI: 10.1103/physrevb.59.797

Google Scholar

[19] O. Vasylkiv, Y. Sakka and V. V. Skorokhod, Low‐Temperature Processing and Mechanical Properties of Zirconia and Zirconia–Alumina Nanoceramics. J. Ame. Cera. Soc., 86-2 (2003) 299-304.

DOI: 10.1111/j.1151-2916.2003.tb00015.x

Google Scholar