[1]
I. Eide-Haugmo, O.G. Brakstad, K.A. Hoff, K.R. Sørheim, E.F. da Silva, H.F. Svendsen, Environmental impact of amines, Energy Procedia 1(1) (2009) 1297-1304.
DOI: 10.1016/j.egypro.2009.01.170
Google Scholar
[2]
D. Zhang, Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron, Transition Metal Chemistry 35(8) (2010) 933-938.
DOI: 10.1007/s11243-010-9414-6
Google Scholar
[3]
M.B. Fisher, D.A. Keane, P. Fernández-Ibáñez, J. Colreavy, S.J. Hinder, K.G. McGuigan, S.C. Pillai, Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination, App. Catal. B: Env. 130-131 (2013) 8-13.
DOI: 10.1016/j.apcatb.2012.10.013
Google Scholar
[4]
N. Riaz, F.K. Chong, B.K. Dutta, Z.B. Man, M.S. Khan, E. Nurlaela, Photodegradation of Orange II under visible light using Cu–Ni/TiO2: Effect of calcination temperature, Chemical Engineering Journal 185-186 (2012) 108-119.
DOI: 10.1016/j.cej.2012.01.052
Google Scholar
[5]
X.L. Yuan, J.L. Zhang, M. Anpo, D. N. He, Synthesis of Fe3+ doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall, Research on Chemical Intermediates 36 (2010) 83-93.
DOI: 10.1007/s11164-010-0117-6
Google Scholar
[6]
L.S. Yoong, F.K. Chong, B.K. Dutta, Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light, Energy 34(10) (2009) 1652-1661.
DOI: 10.1016/j.energy.2009.07.024
Google Scholar
[7]
C.H. Lu, W.H. Wu, R.B. Kale, Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders, J. of Haz. Mat. 154(1-3) (2008) 649-654.
DOI: 10.1016/j.jhazmat.2007.10.074
Google Scholar
[8]
M. Klare, J. Scheen, K. Vogelsang, H. Jacobs, J.A.C. Broekaert, Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis, Chemosphere l41 (2000) 353-362.
DOI: 10.1016/s0045-6535(99)00447-6
Google Scholar
[9]
C.S. Lu, C.C. Chen, F.D. Mai, H.K. Li, Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis, J. of Haz. Mat. 165 (2009) 306-316.
DOI: 10.1016/j.jhazmat.2008.09.127
Google Scholar
[10]
C.H. Lu, W.H. Wu, R.B. Kale, Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders, J. of Haz. Mat. 154(1-3) (2008) 649-654.
DOI: 10.1016/j.jhazmat.2007.10.074
Google Scholar
[11]
J.S. Noh, and J.A. Schwarz, Estimation of the point of zero charge of simple oxides by mass titration, Journal of Colloid and Interface Science 130 (1989) 157-164.
DOI: 10.1016/0021-9797(89)90086-6
Google Scholar
[12]
Y. Wu, J. Zhang, L. Xiao, F. Chen, Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light, Applied Surface Science 256(13) (2010) 4260-4268.
DOI: 10.1016/j.apsusc.2010.02.012
Google Scholar
[13]
A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting, Sol. Energy Mat. and Sol. Cells 91 (2007) 1326-1337.
DOI: 10.1016/j.solmat.2007.05.005
Google Scholar
[14]
Y. Wu, J. Zhang, L. Xiao, F. Chen, Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants, App. Catal. B: Env. 88 (2009) 525-532.
DOI: 10.1016/j.apcatb.2008.10.008
Google Scholar
[15]
E.S. Hamborg, G.F. Versteeg, Dissociation constants and thermodynamic properties of alkanolamines, Energy Procedia 1(1) (2009) 1213-1218.
DOI: 10.1016/j.egypro.2009.01.159
Google Scholar