Microwave Hybrid Heating of Materials Using Susceptors - A Brief Review

Article Preview

Abstract:

This article discusses the fundamentals and benefits of microwave hybrid heating. High dielectric loss materials can be processed using direct microwave heating, whereas low dielectric loss materials can only be process using microwave through microwave hybrid heating. It was shown that it is possible to virtually process any type of materials via microwave hybrid heating. Microwave hybrid heating offers faster heating rate than direct microwave heating. It reduces the problem of thermal runaway experience in direct microwave heating of high dielectric loss materials. The two basic types of microwave hybrid heating techniques were discussed with emphasis on the use of susceptor. Microwave hybrid heating using susceptor offers the advantage of using single energy source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-430

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. M. Al-harahsheh, S. W. Kingman, Microwave-assisted leaching-a review, Hydrometallurgy, 73(2004), 189-203.

DOI: 10.1016/j.hydromet.2003.10.006

Google Scholar

[2] K. E. Haque, Microwave energy for mineral treatment process - a brief review, International Journal of Mineral Processing, 57(1999), 1-24.

DOI: 10.1016/s0301-7516(99)00009-5

Google Scholar

[3] E. T. Thostenson, T. W. Chou, Microwave processing: Fundamentals and applications, Composites: Part A, 30(1999), 1055-1071.

DOI: 10.1016/s1359-835x(99)00020-2

Google Scholar

[4] D. E. Clark, D. C. Folz, J. K. West, Processing materials with microwave energy, Materials Science and Engineering, A287(2000), 153-158.

Google Scholar

[5] D. Agrawal, Microwave sintering, brazing and melting of metallic materials, Advanced Processing of Metals and Materials, Sohn International Symposium, 4 (2006), 183-192.

Google Scholar

[6] R. R. Menezes, R. H. G. A. Kiminami, Microwave sintering of alumina-zirconia nanocomposites, Journal of Materials Processing Technology, 203(2008), 513-517.

DOI: 10.1016/j.jmatprotec.2007.10.057

Google Scholar

[7] K. E. Haque, Microwave energy for mineral treatment process- a brief review, International Journal of Mineral Processing, 57(1999), 1-24.

DOI: 10.1016/s0301-7516(99)00009-5

Google Scholar

[8] K. Wu, H. S. Park, M. W. Porada, Pyrolysis of polyurethane by microwave hybrid heating for processing of NiCr foams, Journal of Materials Processing Technology, 212(2012), 1481-1487.

DOI: 10.1016/j.jmatprotec.2012.02.010

Google Scholar

[9] S. Chandrasekaran, T. Basak, S. Ramanathan, Experimental and theoretical investigation on microwave melting of metals, Journal of Materials Processing Technology, 211(2011), 482-487.

DOI: 10.1016/j.jmatprotec.2010.11.001

Google Scholar

[10] P.T. Jones, J. Vleugels, I. Volders, B. Blanpain, O. Van der Biest, P. Wollants, A study of slag-infiltrated magnesia-chromite refractories using hybrid microwave heating, Journal of European Ceramics Society, 22(2002), 903-916.

DOI: 10.1016/s0955-2219(00)00343-5

Google Scholar

[11] P. D. Ramesh, D. Branden, L. Schachter, Use of partially oxidized SiC particle bed for microwave sintering of low-loss ceramics, Materials Science and Engineering, A266(1999), 211-220.

DOI: 10.1016/s0921-5093(99)00017-9

Google Scholar

[12] A. A. Salema, F. N. Ani, Microwave induced pyrolysis of oil-palm biomass, Bioresource Technology, 102(2011), 3388-3395.

DOI: 10.1016/j.biortech.2010.09.115

Google Scholar

[13] D. Gupta, A. K. Sharma, Development and microstructural characterization of microwave cladding on austenitic stainless steel, Surface and Coatings Technology, 205(2011), 5147-5155.

DOI: 10.1016/j.surfcoat.2011.05.018

Google Scholar

[14] www. sagepub. com access on 2th August, (2013).

Google Scholar

[15] Z. Hussain, K. M, Khan, K. Hussain, Microwave-metal interaction: Pyrolysis of polystyrene, Journal of Analytical and Applied Pyrolysis, 89(2010), 39-43.

DOI: 10.1016/j.jaap.2010.05.003

Google Scholar