Effect of Electrospinning Parameters Setting towards Fiber Diameter

Article Preview

Abstract:

Fabrication of nanofibers using electrospinning has recently attracted much attention for various applications due to its simplicity. Electrospinning has the ability to produce nanofibers within 100-500 nm. Some applications require certain fiber diameter. As a relatively new process, there are many electrospinning parameters that are believed to influence the nanofibers diameter. The purpose of this review is to identify and discuss the effect of some of those parameters, i.e. concentration, spinning distance, and applied voltage, and volume flow rate, to the nanofiber diameter during electrospinning process. It was concluded that fiber volume flow rate is proportional to fiber diameter while there is no agreement in reports on other parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

985-988

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abdalla Abdal-hay, Leonard D. Tijing, Jae Kyoo Lim, Characterization of the surface biocompatibility of an electrospun nylon 6/CaP nanofiber scaffold using osteoblasts. Chemical Engineering Journal. (2013) 215–216, 57–64.

DOI: 10.1016/j.cej.2012.10.046

Google Scholar

[2] J. Zeng, Yang LiangZhang, Guan Xu chEn and Jing, Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation, Journal of Controlled Release. Vol. 105(2005): 43-51.

DOI: 10.1016/j.jconrel.2005.02.024

Google Scholar

[3] M.S. Khil, kim and Bhattarai, Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, Vol. 67 (2003): 675-679.

DOI: 10.1002/jbm.b.10058

Google Scholar

[4] P.W. Gibson, H.L. Schreunder-Gibson and D. Rivin, Electospun fiber mats: transport properties. AICHE Journal. Vol. 45(1999) 190-195.

DOI: 10.1002/aic.690450116

Google Scholar

[5] X.H. Qin and S.Y. Wang. Filtration properties of electrospinning nanofibers. Journal of Applied Polymer Science, Vol 102 (2006) 1285-1290.

DOI: 10.1002/app.24361

Google Scholar

[6] Z.M. huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their application in nanocomposite. Composites Science and Technology. Vol. 63 (2003): 2223-2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[7] S.W. Lee, S.W. Choi, S.M. Jo, Chin, Kim and K.Y. Lee, Electrochemical properties and cycle performance of electrospun Poly(Vinylidene Fluoride)- based fibrous membrane electrolytes for Li-ion polymer battery. Journal of Power Sources. vol. 163 (2006).

DOI: 10.1016/j.jpowsour.2005.11.102

Google Scholar

[8] C. Kim. Electrochemical characterization of electrospun activated carbon nanofibers as an electrode in supercapacitors. Journal of Power Sources. Vol. 142 (2006) : 382-388.

DOI: 10.1016/j.jpowsour.2004.11.013

Google Scholar

[9] N.J. Pinto, Johnson, MacDiarmid, Mueller , Theofylaktos, Robinson and Miranda, Electrospun Polyaniline/Polyethylene Oxide nanofiber field-effect transistor, Applied Physics Letters. Vol 83 (2003) 20: 4244-4246.

DOI: 10.1063/1.1627484

Google Scholar

[10] D. Aussawasathien, J.H. Dong and Dai (2005), Electrospun polymer nanofiber sensors, Synthetic Metals. Vol. 54 (2005) : 37-40.

DOI: 10.1016/j.synthmet.2005.07.018

Google Scholar

[11] S.Y. Jang, V. Senshadri, M.S. Khil, Kumar, Marquez,. Mather and. Sotzing, Welded Electrochromic conductive polymer nanofibers by electrostatic spinning, Advanced Materials. vol. 17 (2005) : 2177-2180.

DOI: 10.1002/adma.200500577

Google Scholar

[12] D. Li, Y. Xia, Electrospinning of nanofibers: Reinventing the wheel, Advanced Materials. 16 (2004) : 1151-1170.

DOI: 10.1002/adma.200400719

Google Scholar

[13] Rachael L. Fischer Michael G. McCoy Sheila A. Grant, Electrospinning collagen and hyaluronic acid nanofiber, J Mater Sci : Mater Med 23 (2012) : 1645–1654.

DOI: 10.1007/s10856-012-4641-3

Google Scholar

[14] Izabella Rajzer , Ryszard Kwiatkowski , Wojciech Piekarczyk , Włodzimierz Biniaś , Jarosław Janicki, Carbon nanofibers produced from modified electrospun PAN/Hydroxyapatite precursors as scaffolds for bone tissue engineering. Materials Science and Engineering 32 (2012).

DOI: 10.1016/j.msec.2012.07.041

Google Scholar

[15] Nguyen T. H, Lee B. T, In vitro and in vivo studies of RHBMP 2-coated PS/PCL fibrous scaffolds for bone regeneration, J Biomed Mater. Res Part A: 101A (2013) : 797–808.

DOI: 10.1002/jbm.a.34382

Google Scholar

[16] Y. Y. Qi, Z. X. Tai, D. F. Sun, J. T. Chen, H. B. Ma, X. B. Yan, B. Liu, Q. J. Xue, Fabrication and characterization of Poly(Vinyl Alcohol)/Graphene Oxide nanofibrous biocomposite scaffolds, J. Appl. Polym. Sci., Doi: 10 (2013) 1002.

DOI: 10.1002/app.37924

Google Scholar

[17] A. K Haghi and M. Akbari, Trends in electrospinning of natural nanofibers, Physica Status Solidi. Vol. 204 (2007): 1830-1834.

DOI: 10.1002/pssa.200675301

Google Scholar

[18] T. Wang and S Kumar, Electrospinning of Polyacrylonitrile nanofibers, Journal of Applied Polymer Science, Vol. 102 (2007) : 1023-1029.

Google Scholar

[19] Q. Li, Z. Jia, Y. YangWang and Z. Guan, Preparation and properties of Poly(Vinyl Alcohol) nanofibers by electrospinning, IEEE International Conference On Solid Dielectrics, Winchester, U.K. July 8-13 (2007).

DOI: 10.1109/icsd.2007.4290790

Google Scholar

[20] X. Yuan, Y. Zhang, C. Dong, and J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning, Polymer International. Vol 53 (2004): 1704-1710.

DOI: 10.1002/pi.1538

Google Scholar

[21] C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um and Y.H. Park, Characterization of gelatin nanofiber prepared from gelatin-formic acid solution, Polymer. Vol. 46 (2005): 5094-5102.

DOI: 10.1016/j.polymer.2005.04.040

Google Scholar

[22] Yu-Mi Haa, Touseef Amnab, Mi-Hee Kima, Hyun-Chel Kimc, M. Shamshi Hassana, Myung-Seob Khila, Novel silicificated PVAc/POSS composite nanofibrous mat via facile electrospinning technique : Potential scaffold for hard tissue engineering colloids and surfaces, B. Biointerfaces. 102 (2013).

DOI: 10.1016/j.colsurfb.2012.09.018

Google Scholar

[23] Abdalla Abdal-haya, Faheem A. Sheikhc, Jae Kyoo Limb. Air jet spinning of Hydroxyapatite/Poly(Lactic Acid) hybrid nanocomposite membrane mats for bone tissue engineering, Colloids and Surfaces B: Biointerfaces. 102 (2013): 635– 643.

DOI: 10.1016/j.colsurfb.2012.09.017

Google Scholar

[24] M Tyler Nelson, Joshua P Keith, Bing-Bing Li, David L Stocum, and Jiliang Li, Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration nano-engineering and nanosystems 226 (2012) : 111–121.

DOI: 10.1177/1740349912450828

Google Scholar

[25] Jingwei Xie , Shaoping Zhong , Bing Maa, Franklin D. Shuler , Chwee Teck Lim, Controlled biomineralization of electrospun poly(e-caprolactone) fibers to enhance their mechanical properties. Acta Biomaterialia 11 (2012).

DOI: 10.1016/j.actbio.2012.10.042

Google Scholar

[26] T. Wang and S. Kumar, Electrospinning of polyacrylonitrile nanofibers, Journal of Applied Polymer Scince, vol. 102(2006): 1023-1029.

Google Scholar

[27] S. Kidoaki, I. K. Kwon and T. Matsuda, Mesoscopic spatial designs of nano and microfiber meshes for tissue engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning technique, Biomaterials. vol. 26 (2005).

DOI: 10.1016/j.biomaterials.2004.01.063

Google Scholar

[28] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao and B. Chu. Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer. Vol. 43 (2002): 4403-4412.

DOI: 10.1016/s0032-3861(02)00275-6

Google Scholar

[29] A. Salifu, D. Nury, and Lekakou, Electrospinning of nanocomposite fibrillar tubular and flat scaffolds with controlled fiber, Orientation Annals of Biomedical Engineering. Vol. 39(2011) 10: 2510–2520.

DOI: 10.1007/s10439-011-0350-1

Google Scholar