[1]
Rachna Dhamija and J.D. Tygar. Phish and HIPs: Human Interactive Proofs to Detect Phishing Attacks. In In Human Interactive Proofs: Second International Workshop. 127-141, (2005).
DOI: 10.1007/11427896_9
Google Scholar
[2]
Li Baolip, Chen Yuzhong, Yu Shiwen. A Comparative Study on Automatic Categorization Methods for Chinese Search Engineer[C]. In proceedings of Eighth Joint International Computer Conference. 117-120. (2002).
Google Scholar
[3]
C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. In Proceedings of CRYPTO'92, Lecture Notes in Computer Science. 137-147, (1992).
DOI: 10.1007/3-540-48071-4_10
Google Scholar
[4]
Joachims T. Text Categorization with support vector machines: Learning with many Relevant Features[C]. In proceedings of the 10th European conference on Machine Learning. (1998).
DOI: 10.1007/bfb0026683
Google Scholar
[5]
I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos and P. Stamatopoulos. Learning to Filter Spam Email: A comparison of a Navie Bayesian and a memory-based Approach[C]. In proceedings 4th European conference on principles and practice of knowledge discovery in databases. 1-13. (2000).
DOI: 10.1023/a:1022948414856
Google Scholar
[6]
X. Carreras, L. Marquez. Boosting Trees for anti-spam email filtering[C]. In proceedings of Euro Conferences Recent Advances in NLP. 58-64. (2001).
Google Scholar
[7]
A. Kolcz, J. Alspeetor. SVM-based Filtering of E-mail Spam with content specific misclassification costs[C]. In proceedings of ICDM-2001 Workshop on text mining. (2001).
Google Scholar
[8]
M. Sahami, S. Dumais, D. Heekerman and E. Horvitz.A. Bayesian approach to Filtering Junk EMail[C]. In Proeeedings of AAAI-98 Work shop on Learning for Text Categorization. 55-62. (1998).
Google Scholar
[9]
T. Nichoalas. Using Adaboost and decision stumps to identify spam email[EB/OL]. Stanford University course project. http: /nlp. stanford. edu/course/cs224n/2003/fp/tyronen/report. pdf. (2003).
Google Scholar
[10]
Z Pawlak. Rough sets[J]. International Journal of Computer and Information Sciences. 11(5): 341-356. (1982).
Google Scholar
[11]
Hrishikesh B. Aradhye, Gregory K. Myers, James A. Herson. Image Analysis for Efficient Categorization of Image-based Spam E-mail[J]. Document Analysis and Recognition. 2(9): 914-918. (2005).
DOI: 10.1109/icdar.2005.135
Google Scholar
[12]
H. Drucker, D. Wu, V.N. Vapnik. Support Vector Machines for spam categorization[J]. IEEE Transactions on Neural networks. 20(5), 1048-1054. (1999).
DOI: 10.1109/72.788645
Google Scholar