Finite-Time Stability for Continuous-Time Linear Singular Systems

Article Preview

Abstract:

In this paper the finite-time stability (FST) problem of continuous-time linear singular systems (CTLSS) is considered. The main results provided are a sufficient condition of FTS for CTLSS and a sufficient condition of robust FTS for uncertain CTLSS. Such sufficient conditions in the LMI formalism are attained for finite-time stability; this gives the opportunity of fitting the finite time stability problem in the general framework of the linear matrix inequality (LMI) approach. In this context an example is provided to demonstrate the application of the proposed method for CTLSS finite-time stability problem.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 846-847)

Pages:

383-387

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Masubuchi, Y. Kamitane, A. Ohara. And N. Suda. Control for descriptor systems: A matrix inequalities approach [J]. Automatica, 1997, 33(4): 669-673.

DOI: 10.1016/s0005-1098(96)00193-8

Google Scholar

[2] Xu S Y, Yang C W, Niu Y G, James Lam. Robust Stabilization for uncertain discrete singular systems: a matrix inequalities approach. Automatica, 37(2001): 769-774.

DOI: 10.1016/s0005-1098(01)00013-9

Google Scholar

[3] Zhang L Q, Lam J, Zhang Q L. Lyapunov and Riccati equations of discrete-time descriptor systems. IEEE Transactions on Automatic control, 1999, 44 (11): 2134-2139.

DOI: 10.1109/9.802931

Google Scholar

[4] Dorato, P. (1961). Short time stability in linear time-varying systems. In Proceedings of IRE International Convention Record Part 4 (p.83–87).

Google Scholar

[5] Weiss, L., & Infante, E. F. (1967). Finite time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, 12, 54–59.

DOI: 10.1109/tac.1967.1098483

Google Scholar

[6] Amato F, Ariola M, & Dorato P. Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, 2001, 37(9), 1459-1463.

DOI: 10.1016/s0005-1098(01)00087-5

Google Scholar

[7] Emmanuel Moulay, Wilfrid Perruquetti. Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006): 1430–1443.

DOI: 10.1016/j.jmaa.2005.11.046

Google Scholar

[8] Amato F, & Ariola M. Finite-time control of discrete-time linear systems. IEEE Transactions on Automatic Control, 50(2005): 724-729.

DOI: 10.1109/tac.2005.847042

Google Scholar

[9] Amato F, Ambrosino R, Ariola M, & Calabrese F. Finite-time stability analysis of linear discrete-time systems via polyhedral Lyapunov functions. In Proc. American control conference, 2008, pp.1656-1660.

DOI: 10.1109/acc.2008.4586729

Google Scholar

[10] Amato F, Ariola M, & Cosentino C. Finite-time stabilization via dynamic output feedback. Automatica, 42 (2006): 337-342.

DOI: 10.1016/j.automatica.2005.09.007

Google Scholar

[11] Amato F, Ariola M, Carbone M, & Cosentino C. Finite-time control of discrete-time linear systems: Analysis and design conditions Finite-time output feedback control of discrete-time systems. Automatica, 46 (2010): 919-924.

DOI: 10.1016/j.automatica.2010.02.008

Google Scholar

[12] Garcia G, Tarbouriech S, & Bernussou J. Finite-time stabilization of linear time-varying continuous systems. IEEE Transactions on Automatic Control, 54 (2009): 364-369.

DOI: 10.1109/tac.2008.2008325

Google Scholar

[13] Zhu L, Shen Y J, Li C C. Finite-time control of discrete-time systems with time-varying exogenous disturbance. Communications in Nonlinear Science and Numerical Simulation, 14 (2009): 361–370.

DOI: 10.1016/j.cnsns.2007.09.013

Google Scholar

[14] Ambrosino R, Calabrese F, Cosentino C, & De Tommasi G. Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Transactions on Automatic Control, 54(2009): 861-865.

DOI: 10.1109/tac.2008.2010965

Google Scholar

[15] Zhao S, Sun J, & Liu L. Finite-time stability of linear time-varying singular systems with impulsive effects. International Journal of Control, 2008, 81(11): 1824-1829.

DOI: 10.1080/00207170801898893

Google Scholar

[16] Zhang X F, Feng G, Sun Y H. Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica, 48 (2012): 499–504.

DOI: 10.1016/j.automatica.2011.07.014

Google Scholar