[1]
Khalil H K. Nonlinear Systems. Upper Saddle River: Prentice-Hall, (1996).
Google Scholar
[2]
Han Q L. Absolute stability of time-delay systems with sector-bounded nonlinearity[J]. Automatica, 2005, 41(12): 2171-2176.
DOI: 10.1016/j.automatica.2005.08.005
Google Scholar
[3]
Qiu F, Zhang Q. Absolute stability analysis of Lurie control system with multiple delays: An integral-equality approach[J]. Nonlinear Analysis: Real World Applications, 2011, 12(3): 1475-1484.
DOI: 10.1016/j.nonrwa.2010.10.007
Google Scholar
[4]
Ramakrishnan K, Ray G. Improved delay-range-dependent robust stability criteria for a class of Lur'e systems with sector-bounded nonlinearity[J]. Journal of the Franklin Institute, 2011, 348(8): 1769-1786.
DOI: 10.1016/j.jfranklin.2011.04.015
Google Scholar
[5]
Xu S, Feng G. Improved robust absolute stability criteria for uncertain time-delay systems[J]. IET Control Theory & Applications, 2007, 1(6): 1630-1637.
DOI: 10.1049/iet-cta:20060539
Google Scholar
[6]
Wu M, Feng Z Y, He Y. Improved delay-dependent absolute stability of Lur'e systems with time-delay[J]. International Journal of Control, Automation and Systems, 2009, 7(6): 1009-1014.
DOI: 10.1007/s12555-009-0618-5
Google Scholar
[7]
Ramakrishnan K, Ray G. Improved stability criteria for Lurie type systems with time-varying delay[J]. Acta Automatica Sinica, 2011, 37(5): 639-644.
DOI: 10.1016/s1874-1029(11)60207-3
Google Scholar
[8]
Park P G, Ko J W, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47(1): 235-238.
DOI: 10.1016/j.automatica.2010.10.014
Google Scholar