[1]
M. Ciappa, Selected failure mechanisms of modern power modules, Microelectronics Reliability, vol. 42, p.653–667, (2002).
DOI: 10.1016/s0026-2714(02)00042-2
Google Scholar
[2]
T. Stockmeier, From packaging to Un-Packaging–Trends in power semiconductor modules, Power Semiconductor Devices and IC's, 20th Intern. Symposium, ISPSD, p.12–19, May, (2008).
DOI: 10.1109/ispsd.2008.4538886
Google Scholar
[3]
A. Christmann, M. Thoben, K. Mainka, Reliability of Power Modules in Hybrid Vehicles, PCIM Europe , p.359–366, May, (2009).
Google Scholar
[4]
J. Lutz, H. Schlangenotto, U. Scheuermann and R. D. Doncker, Semiconductor Power Devices, Physics, Characteristics, Reliability, p.380–409, Springer-Verlag Berlin Heidelberg, (2011).
DOI: 10.1007/978-3-642-11125-9
Google Scholar
[5]
S. S. Manson, Thermal stress and low cycle fatigue, New York: McGraw-Hill, (1966).
Google Scholar
[6]
M. Held, P. Jacob, G. Nicoletti, P. Scacco and M. H. Poech, Fast Power Cycling Test for IGBT Modules in Traction Application, Power Electronics and Drive Systems, p.425–430, May (1997).
DOI: 10.1109/peds.1997.618742
Google Scholar
[7]
I. F. Kovacevic, U. Drofenik and J. K. Wolar, New Physical Model for Lifetime Estimation of Power Modules, Intern. Power Electronics Conference (IPEC), p.2106–2114, Jun. (2010).
DOI: 10.1109/ipec.2010.5543755
Google Scholar
[8]
K. C. Norris and A. H. Landzberg, Reliability of controlled collapse interconnections, IBM Journal of Research and Development, vol. 13, no. 3, p.266–271, May (1969).
DOI: 10.1147/rd.133.0266
Google Scholar
[9]
R. Bayerer, T. Herrmann, T. Lutz, J. Lutz, M. Feller, Model of power cycling lifetime of IGBT Modules - Various Factors Influencing lifetime, Integrated Power Systems (CIPS), Mar. (2008).
Google Scholar
[10]
Y. Wang, S. Jones, D. Chamund and G. Liu, Lifetime modeling of IGBT modules subjected to power cycling tests, PCIM Europe, p.802–809, May, (2013).
Google Scholar
[11]
G. Coquery, S. Carubelli, J. P. Ousten, R. Lallemand, F. Lecoq, D. Lhotellier, V. de Viry and Ph. Dupuy, Power module lifetime estimation from chip temperature direct measurement in an automotive traction inverter, Microelectronics Reliability, vol. 41, no. 9–10, p.1695–1700, (2001).
DOI: 10.1016/s0026-2714(01)00197-4
Google Scholar
[12]
M. A. Miner. Cumulative Damage in Fatigue, J. Applied Mechanics, 12, A159–A164, (1945).
DOI: 10.1115/1.4009458
Google Scholar
[13]
M. Matsuishi and T. Endo, Fatigue of metals subjected to varying stress- Fatigue lives under random loading, Proc. of the Kyushu District Meeting, p.37–40, (1968).
Google Scholar
[14]
DIM800NSM33-F000, Single Switch IGBT Module, http: /www. dynexpowersemiconductors. com/product-area/igbt-modules, Sep. (2012).
Google Scholar