An H-Phosphonate Strategy for the Synthesis of Aciclovir 5′-triphosphate

Article Preview

Abstract:

Nucleside 5′-triphosphates (NTPs) play pivotal roles in biology and medicine. However, their synthesis still remains a challenge. We developed a general approach to the synthesis of aciclovir 5′-triphosphate by coupling intermediate pyridinium phosphoramidate with pyrophosphate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Vaghefi, in: Nucleoside Triphosphates and their Analogs: Chemistry, Biotechnology, and Biological Applications, edtied by M.M. Vaghefi Taylor & Francis, Boca Raton, FL (2005), in press.

DOI: 10.1201/9781420027600.ch4

Google Scholar

[2] K. Burgess, D. Cook, Chem. Rev. Vol. 100 (2000), p. (2047).

Google Scholar

[3] H. Schaffer, V. Robert, S. Bittner, S. Gurwara, J. Med. Chem. Vol. 14 (1971), p.367−369.

Google Scholar

[4] B. Öberg, Antiviral Res. Vol. 71 (2006), p.90.

Google Scholar

[5] L. Weinschenk, C. Meier, in: Chemical Synthesis of Nucleoside Analogues, edited by P. Merino, chapter, 5, John Wiley & Sons, Hoboken, NJ (2013).

Google Scholar

[6] J. Ludwig, Acta Biochim. Biophys. Hung. Vol. 16 (1981), p.131.

Google Scholar

[7] J. Ludwig, F. Eckstein, J. Org. Chem. Vol. 54 (1989), p.631.

Google Scholar

[8] Carlos I. Martinez, Lars H. Thoresen and Kevin Burgess, An allylic/acyclic adenosine nucleoside triphosphate for termination of DNA synthesis by DNA template-dependent polymerases, Nucleic Acids ResearchVolume 27, Issue 5, p.1271.

DOI: 10.1093/nar/27.5.1271

Google Scholar

[9] Carlos I. Martineza, M. Ali Ansarib, Richard Gibbsb, Kevin Burgess, Acyclic nucleoside triphosphate analogs as terminators in biocatalytic DNA replication, Bioorganic & Medicinal Chemistry Letters Volume 7, Issue 23, 2 December 1997, p.3013.

DOI: 10.1016/s0960-894x(97)10135-4

Google Scholar

[10] J.C. Williams, L. Lin, M. Smith, Z. Huang, Chem. Commun. Vol. 47 (2011), p.8142.

Google Scholar

[11] S. Warnecke, C. Meier, J. Org. Chem. Vol. 74 (2009), p.3024.

Google Scholar

[12] S. Mohamady, A. Desoky, S.D. Taylor, Org. Lett. Vol. 14 (2012), p.402.

Google Scholar

[13] J.G. Moffatt, Can. J. Chem. Vol. 42 (1964), p.599.

Google Scholar

[14] C. Crauste, C. Perigaud, S. Peyrottes, J. Org. Chem. Vol. 76 (2011), p.997.

Google Scholar

[15] W.D. Wu, C.L.F. Meyers, R.F. Borch, Org. Lett. Vol. 6 (2004), p.2257.

Google Scholar

[16] S. Mohamady, D.L. Jakeman, J. Org. Chem. Vol. 70 (2005), p.10588.

Google Scholar

[17] Q. Sun, S. Liu, J. Sun, S. Gong, Q. Xiao, L. Shen, Tetrahedron Lett. Vol. 54 (2013), p.3842.

Google Scholar

[18] Q. Sun, J.P. Edathil, R. Wu, E.D. Smidansky, C.E. Cameron, B.R. Peterson, Org. Lett. Vol. 10 (2008), p.1703.

Google Scholar

[19] Q. Sun, S. Gong, J. Sun, S. Liu, Q. Xiao, S. Pu, J. Org. Chem. Vol. 78 (2013), p.8417.

Google Scholar