The Role of Friction Stir Welding Process Parameter on Mechanical Properties of Magnesium Alloy AZ31B

Article Preview

Abstract:

The Friction Stir welding is a solid state welding invented in the year 1991.This welding technique is highly energy efficient, eco-friendly in joining the high strength aerospace aluminums alloys and its other alloys which are not able to weld by the conventional fusion welding process. Initially FSW is use to weld aluminums alloys and gradually it applies to all form of metals and alloys. In this review article the current state of understanding and development of FSW with respect to Magnesium alloys AZ 31 B is addressed. And particular emphasis is given to the effect of FSW process parameters on the mechanical properties, corrosion behavior and microstructure evolution. At this stage there is wide gap in understanding the mechanism of dissimilar Magnesium welds on microstructure evolution and microstructure property relationships with respect to FSW and Submersible FSW process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-44

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Abderrazak K, Kriaa W, Salem WB, Mhiri H, Lepalec G and Autric M, Optics & Laser Technology, 41 (2009) 470.

DOI: 10.1016/j.optlastec.2008.07.012

Google Scholar

[2] Cao X, Jahazi M, Immarigeon JP and Wallace W, Journal of Materials Processing Technology, 171 (2006) 188.

Google Scholar

[3] Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Templesmith P. and Dawes C.J. (1991), GB Patent Application No. 9125978. 8.

Google Scholar

[4] Dawes C. and Thomas W. (1995), TWI Bulletin 6, November/December: p.124.

Google Scholar

[5] London B., Mahoney M., Bingel B., Calabrese M. and Waldron D. (2001), Proceedings of the Third International Symposium on Friction Stir Welding, Kobe, Japan.

Google Scholar

[6] Rhodes C.G., Mahoney M.W., Bingel W.H., Spurling R.A. and Bampton C.C. (1997), ScriptaMaterialia, Vol. 36, p.69.

Google Scholar

[7] Liu G., Murr L.E., Niou C.S., McClure J.C. and Vega F.R. (1997), ScriptaMaterialia, Vol. 37, p.355.

Google Scholar

[8] Jata K.V. and Semiatin S.L. (2000), ScriptaMaterialia, Vol. 43, p.743.

Google Scholar

[9] BenavidesS, Li Y., MurrL. E, Brown D and McClure (1999), ScriptaMaterialia, Vol. 41, p.809.

Google Scholar

[10] Chen Y., Liu H. and Jicai F. (2006), Materials Science and Engineering A, Vol. 420, pp.21-25.

Google Scholar

[11] Liu H.J., Chen Y.C. and Feng J.C. (2006), ScriptaMaterialia, Vol. 55, pp.231-234.

Google Scholar

[12] Mishra R.S. and Ma Z.Y. (2005), Materials Science and Engineering R, Vol. 50, pp.1-78.

Google Scholar

[13] Fujii H., Cui L., Maeda M. and Nogi K. (2006), Materials Science and Engineering A, Vol. 419, pp.25-31.

Google Scholar

[14] W.M. Thomas, E.D. Nicholas, S.D. Smith, in: S.K. Das, J.G. Kaufman, T.J. Lienert (Eds. ), Aluminum 2001—Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions, TMS, 2001, p.213.

Google Scholar

[15] G. Padmanaban, V. Balasubramanian, Materials and Design 30 (2009) 2647–2656.

Google Scholar

[16] S. Malarvizhi, V. Balasubramanian, Materials and Design 40 (2012) 453–460.

Google Scholar

[17] M. Simoncini, A. Forcellese, Materials and Design 41 (2012) 50–60.

Google Scholar

[18] S.M. Chowdhurya, D.L. Chen, S.D. Bhole, X. Cao, Materials Science and Engineering A 527 (2010) 6064–6075.

Google Scholar

[19] Sato Y.S., Urata M., Kokawa H. and Ikeda K. (2003), Material Science Forum, Vols. 426-432, pp.2947-2952.

DOI: 10.4028/www.scientific.net/msf.426-432.2947

Google Scholar

[20] Hassan A. AK., Norman A.F. and Prangnell P.B. (2002), Sixth International Trends in Welding Research Conference Proceeding, pp.287-292.

Google Scholar

[21] Liu H.J., Fujii H. and Maeda M. (2003), Journal of Material Processing and Technology, Vol. 142, pp.692-696.

Google Scholar

[22] B.M. Darras, M.K. Khraisheh , F.K. Abu-Farha, M.A. Omar, Journal of Materials Processing Technology 191 (2007) 77–81.

DOI: 10.1016/j.jmatprotec.2007.03.045

Google Scholar

[23] X. Cao , M. Jahazi, Materials and Design 32 (2011) 1–11.

Google Scholar

[24] G.M. Xie, Z.Y. Ma, Z.A. Luo, P. Xueand G.D. Wang, J. Mater. Sci. Technol., 2011, 27(12), 1157-1164.

Google Scholar

[25] N. Afrin , D.L. Chen, X. Cao, M. Jahazi, Materials Science and Engineering A 472 (2008) 179–186.

Google Scholar

[26] G. Padmanaban, V. Balasubramanian, Materials and Design 31 (2010) 3724–3732.

Google Scholar

[27] Lee W.B., Yeon Y.M. and Jung S.B. (2003a), ScriptaMaterialia, Vol. 49, pp.423-428.

Google Scholar

[28] Lomolino S., Tovo R. and Dos Santos J. (2005), International Journal of Fatigue, Vol. 27, pp.305-316.

Google Scholar

[29] H. Zhang , S.B. Lin, L. Wu, J.C. Feng, Sh.L. Ma, Materials and Design 27 (2006) 805–809.

Google Scholar

[30] X. Cao , M. Jahazi, Materials and Design 30 (2009) 2033–(2042).

Google Scholar

[31] G. Padmanaban, V. Balasubramanian, G. MadhusudhanReddy, Journal of Materials Processing Technology 211 (2011) 1224–1233.

Google Scholar

[32] L. Commin, M. Dumont, J. -E. Masse, L. Barrallier, ActaMaterialia 57 (2009) 326–334.

Google Scholar

[33] Loreleï Commin, Myriam Dumont, René Rotinat, FabricePierron, Jean-Eric Masse, LaurentBarrallier, Materials Science and Engineering A 551 (2012) 288– 292.

Google Scholar

[34] M. AbbasiGharacheh_, A.H. Kokabi, G.H. Daneshi, B. Shalchi, R. Sarrafi, International Journal of Machine Tools & Manufacture 46 (2006) 1983–(1987).

DOI: 10.1016/j.ijmachtools.2006.01.007

Google Scholar

[35] M. Simoncini, A. Forcellese, Materials and Design 41 (2012) 50–60.

Google Scholar

[36] Buffa G., Hua J., Shivpuri R. and Fratini L. (2006), Materials Science and Engineering, Vol. 419, pp.389-396.

Google Scholar

[37] Ouyang J.H. and Kovacevic R. (2002), Journal of Material Engineering and Performance, Vol. 11, No. 1, pp.51-63.

Google Scholar