The Galvanic Corrosion between Anodized 6061 Aluminum Plate and C1100 Copper Plate Couple

Article Preview

Abstract:

The galvanic corrosion behavior of anodic AA6061 Al and C1100 Cu couples is investigated. Anodized AA6061-T6 Al plates were produced at different thickness of 1μm, 5μm and 12μm, respectively. The galvanic corrosion current of anodized plate and C1100 copper plate couples was measured using a zero resistance ammeter for 8 hours in two solutions, 3.5wt.% NaCl solution and 1.0 wt.% NaClO solution under temperatures of 25°C, 40°C and 60°C. The results show that the AA6061-T6 aluminum plate without anodizing produced the highest galvanic corrosion current, 1200 μA/cm2, among the tested specimens under flowing NaClO electrolyte at 60°C. Anodized AA6061-T6 aluminum plates with a 12μm anodized layer produced the lowest galvanic corrosion current, 15 μA/cm2, in a static 3.5wt.% NaCl electrolyte at 25°C. Severe corrosion attack was observed at the aluminum specimen with thin and non-uniform anodized layer after the galvanic corrosion tests. The anodizing AA6061 Al plate process can effectively reduce the galvanic corrosion of the AA6061 Al and C1100 Cu couples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ezuber, A. El-Houd, and F. El-Shawesh: Mater. and Design, 29 (2008) p.801.

DOI: 10.1016/j.matdes.2007.01.021

Google Scholar

[2] Y. M. Wang, H. H. Kuo, and S. Kia: Plating Surf. Finish, 91 (2004) p.34.

Google Scholar

[3] L.H. Chiu, H.A. Lin, and C.C. Chen: Materials Science Forum, 419-422 (2003) p.909.

Google Scholar

[4] L.H. Chiu, C. C. Chen, C. F. Yang: Surf. Coatings Techno., 191(2005) p.181.

Google Scholar

[5] Y. Kihn and C. Blanc: Electrochimica Acta, 52 (2007) p.7626.

Google Scholar

[6] A. K. Mayyta, Corrosion Science, 46 (2004) 1129.

Google Scholar

[7] J.A. Wharton, R.J.K. Wood: Corrosion, 61(2005) p.792.

Google Scholar

[8] A.Y. Musa, A.A.H. Kadhum, A. Bakar-Mohamad, A. Razak-Daud, M. Sobri-Takriff, S. Kartom-Kamarudin and N. Muhamad: Int. J. Electrochem. Sci., 4(2009) p.707.

Google Scholar

[9] G. Kear, B.D. Barker, K.R. Stokes and F.C. Walsh: Corros. Sci., 47(2005) p.1694.

Google Scholar

[10] M. T. Montañés, R. Sánchez-Tovar, J. García-Antón, V. Pérez-Herranz: Int. J. Electrochem. Sci. 7. (2012) pp.747-759.

Google Scholar

[11] M. T. Montañés, R. Sánchez-Tovar, J. García-Antón, V. Pérez-Herranz: Int. J. Electrochem. Sci. 5. (2010) p. (1934).

Google Scholar

[12] M.G. Pujar, N. Parvathavarthini, R.K. Dayal and H.S. Khatak: Int. J. Electorchem. Sci., 3 (2008) p.44.

Google Scholar

[13] ASTM G71-81, Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes, 1992, pp.259-262.

Google Scholar