[1]
Y. Liu, X. Cui, Z.B. Zhao, A magnetic detecting and evaluation method of substation's grounding grids with break and corrosion, Frontiers of Electrical and Electronic Engineering in China, 5 (2010) 501-504.
DOI: 10.1007/s11460-010-0096-9
Google Scholar
[2]
S.C. Lim, C. Gomes, M.Z.A. Ab Kadir, Electrical earthing in troubled environment, Electrical Power and Energy Systems 47 (2013) 117-128.
DOI: 10.1016/j.ijepes.2012.10.058
Google Scholar
[3]
E.S. Ibrahim, Corrosion control in electric power systems, Electric Power Systems Research 52 (1999) 9-17.
DOI: 10.1016/s0378-7796(98)00133-3
Google Scholar
[4]
A.P. Akol'zin, L.A. Beketaeva, A. D. Davydov, V. E. Kopytin, K. V. Rybalka, Anodic grounding electrodes made of electroconducting elastomers: Estimating their electrochemical parameters and reliability by the operational impedance method, Russian Journal of Electrochemistry, 6 (2000).
DOI: 10.1007/bf02757534
Google Scholar
[5]
L.J. Feng, A.J. YAN, Y.Q. Meng, J.L. Hou, Investigation on corrosion of yttrium-doped magnesium-based sacrificial anode in ground grid protection, Journal of Rare Earths, 28 (2010) 389-392.
DOI: 10.1016/s1002-0721(10)60351-1
Google Scholar
[6]
X.L. Shang, B. Zhang, E.H. Han, W. Ke, The effect of 0. 4wt. % Mn addition on the localized corrosion behaviour of zinc in a long-term experiment, Electrochimica Acta 65 (2012) 294-304.
DOI: 10.1016/j.electacta.2012.01.078
Google Scholar
[7]
C.L. Li, Y.T. Ma, Y. Li, F.H. Wang, EIS monitoring study of atmospheric corrosion under variable relative humidity, Corrosion Science 52 (2010) 3677-3686.
DOI: 10.1016/j.corsci.2010.07.018
Google Scholar
[8]
T.H. Merkel, H.J. Groß, W. Werner, T. Dahlke, S. Reicherter, G. Beuchle, S.H. Eberle, Copper corrosion by-product release in long-term stagnation experiments, Water Research, 36 (2002) 1547-1555.
DOI: 10.1016/s0043-1354(01)00366-9
Google Scholar
[9]
V. Lair, H. Antony, L. Legrand, A. Chaussé, Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron, Corrosion Science, 48 (2006) 2050-(2063).
DOI: 10.1016/j.corsci.2005.06.013
Google Scholar
[10]
E. Tada, K. Sugawara, H. Kaneko, Distribution of pH during galvanic corrosion of a Zn/steel couple, Electrochimica Acta 49 (2004) 1019-1026.
DOI: 10.1016/j.electacta.2003.10.012
Google Scholar
[11]
W.B. Xue, C. Wang, H. Tian, Y.C. Lai, Corrosion behaviors and galvanic studies of microarc oxidation films on Al–Zn–Mg–Cu alloy, Surface and Coatings Technology 201 (2007) 8695-8701.
DOI: 10.1016/j.surfcoat.2006.10.029
Google Scholar
[12]
Luca Bertolini, Maddalena Carsana, Pietro Pedeferri, Corrosion behaviour of steel in concrete in the presence of stray current, Corrosion Science 49 (2007) 1056-1068.
DOI: 10.1016/j.corsci.2006.05.048
Google Scholar
[13]
D.K. Kim, S. Muralidharan, T.H. Ha, J.H. Bae, Y.C. Ha, H.G. Lee, J.D. Scantlebury, Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments, Electrochimica Acta, 51 (2006).
DOI: 10.1016/j.electacta.2006.01.054
Google Scholar
[14]
A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, U. Hofmann, Field studies of corrosion behaviour of copper alloys in natural seawater, Corrosion Science 76 (2013) 453-464.
DOI: 10.1016/j.corsci.2013.07.019
Google Scholar
[15]
C.H. Lu, W.L. Jin, R.G. Liu, Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures, Corrosion Science 53 (2011) 1337-1347.
DOI: 10.1016/j.corsci.2010.12.026
Google Scholar