Mathematical Model of Transmission Mechanism from Multiphase Composite System

Article Preview

Abstract:

As part of the weak electrolyte, Multiphase Composite System’s structure is more complex. So the conductive electrolyte ion transport has some difficulty to understanding the mechanism. And the present study has not yet reached a consensus, but through the ion conduction mechanism in-depth research on polymer electrolytes Preparation of important guiding significance. Current theories include ionic conductivity effective medium theory (EMT), MN law, WFL equation, NE equation, dynamic bonding penetration model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 850-851)

Pages:

300-303

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Kumar, L. Scanlon, R. Marsh, R. Mason, R. Higgins and R. Baldwin: Electrochim. Acta. Vol. 46(2001), p.1515.

Google Scholar

[2] D.S. McLachlan, J.P. Burger, An analysis of the electrical conductivity of the two phase Pd Hx system[J], Solid State Communications, 1988, 65: p.159.

DOI: 10.1016/0038-1098(88)90678-3

Google Scholar

[3] W. Wieczorek, M. Siekierski, A description of the temperature dependence of the conductivity for composite polymeric electrolytes by effective medium theory[J], Journal of Applied Physics, 1994, 76: p.2220.

DOI: 10.1063/1.357638

Google Scholar

[4] J.R. Stevens, W. Wieczorek, Ionically conducting polyether composites[J], Canadian Journal of Chemistry, 1996, 74: p.2106.

DOI: 10.1139/v96-239

Google Scholar

[5] J. Przyluski, M. Siekierski, W. Wieczorek, Effective medium theory in studies of conductivity of composite polymeric electrolytes[J], Electrochimica Acta, 1995, 40: p.2101.

DOI: 10.1016/0013-4686(95)00147-7

Google Scholar

[6] M. Nakamura, Conductivity for the site–percolation problem by an improved effective–medium theory[J], Phys. Rev. B 1984, 29 : p.3691.

DOI: 10.1103/physrevb.29.3691

Google Scholar

[7] G. J. Dienes and A. C. Damask, Radiation Enhanced Diffusion in Solids[J], Journal of Applied Physics, 1958, 29: p.1713.

DOI: 10.1063/1.1723032

Google Scholar

[8] A.S. Nowick, W-K Lee, H. Jain, Survey and interpretation of pre–exponentials of conductivity, Solid State Ionics, 1988, 28: p.89.

DOI: 10.1016/s0167-2738(88)80013-4

Google Scholar

[9] W. Wieczorek, K. Such, J. Plocharski, J. Przyluski, in: B. Scrosati (Ed. ), Proceedings of the Second InternationalSymposium on Polymer Electrolytes, Elsevier, London, 1990, p.339.

Google Scholar

[10] W. Wieczorek, Entropy effects on conductivity of the blend–based and composite polymer solid electrolytes[J], Solid State Ionics, 1992, 53: p.1064.

DOI: 10.1016/0167-2738(92)90291-v

Google Scholar

[11] W. Wieczorek, Temperature dependence of conductivity of mixed–phase composite polymer solid electrolytes[J], Materials Science and Engineering: B, 1992, 15: p.108.

DOI: 10.1016/0921-5107(92)90041-7

Google Scholar

[12] W.L. Roth, R. Wong, A.I. Goldman, E. Canova, et al., Structure of additives in β"–alumina and zirconia superionic conductors[J], Solid State Ionics, 1986, 18-19: p.1115.

DOI: 10.1016/0167-2738(86)90319-x

Google Scholar

[13] S. D. Druger, M. A. Ratner, A. Nitzan, plications of dynamic bond percolation theory to the dielectric response of polymer electrolytes[J], Solid State Ionics, 18-19: (1986) p.106.

DOI: 10.1016/0167-2738(86)90095-0

Google Scholar

[14] S. D. Druger, M. A. Ratner, A. Nitzan, Generalized hopping model for frequency–dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes[J], Phys. Rev. B, 1985, 31(6): p.3939.

DOI: 10.1103/physrevb.31.3939

Google Scholar

[15] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide)[J], Polymer, 1973, 14(11): p.589.

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar