Microwave-Assisted Synthesis of Anilinocarbonyl Acetylene: A Quick Access to Terminal Alkynes

Article Preview

Abstract:

A facile synthesis of anilinocarbonyl acetylene was achieved in a microwave-assisted condition via condensation of anilines and propiolic acid. The reactions can be completed smoothly within 10 minutes at 30 °C, producing terminal alkynes with excellent yields.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 850-851)

Pages:

66-69

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Holub, J. M.; Kirshenbaum, K. Chem. Soc. Rev. Vol. 39 (2010), p.1325.

Google Scholar

[2] Soules, A.; Ameduri, B.; Boutevin, B.; Calleja, G. Macromolecules Vol. 43 (2010), p.4489.

Google Scholar

[3] Chen, Z.; Ye, D.; Qian, Y.; Ye, M.; Liu, L. Tetrahedron Vol. 69 (2013), p.6116.

Google Scholar

[4] Bew, S.; Hiatt-Gipson, G.; Lovell, J. A.; Poullain, C. Org. Lett. Vol. 14 (2012), p.456.

DOI: 10.1021/ol2029178

Google Scholar

[5] Dong, Z. ; Ye, Z. Macromolecules Vol. 45 (2012), p.5020.

Google Scholar

[6] Onishi, N.; Shiotsuki, M.; Masuda, T.; Sano, N.; Sanda, F. Organometallics Vol. 32 (2013), p.846.

Google Scholar

[7] Tan, Y.; Wang, Z.; Qi, J.; Xiong, J.; Lv, M. Res. Chem. Intermed. Vol. 38 (2012), p.925.

Google Scholar

[8] Zhang, W.; Kuang, C.; Yang, Q. Res. Chem. Intermed. Vol. 38 (2012), p.37.

Google Scholar

[9] Huang, Z.; Wang, R.; Sheng, S.; Zhou, R.; Cai, M. React. Funct. Polym. Vol. 73 (2013), p.224.

Google Scholar

[10] Yang, Q.; Jiang, Y.; Kuang, C. Helv. Chim. Acta Vol. 95 (2012), p.448.

Google Scholar

[11] Xu, M.; Kuang, C.; Wang, Z.; Yang, Q.; Jiang, Y. Synthesis (2011), p.223.

Google Scholar

[12] Jiang, Y.; Kuang, C.; Yang, Q. Tetrahedron Vol. 67 (2011), p.289.

Google Scholar

[13] Wu, L.; Xie, Y.; Chen, Z.; Niu, Y.; Liang, Y. Synlett (2009), p.1453.

Google Scholar

[14] Li, L.; Nan, C.; Peng, Q.; Li, Y. Chem. Eur. J. Vol. 18 (2012), p.10491.

Google Scholar

[15] Patil, S. S.; Jadhav, R. P.; Patil, S. V.; Bobade, V. D. Tetrahedron Lett. Vol. 52 (2011), p.5617.

Google Scholar

[16] Nie, X.; Liu, S.; Zong, Y.; Sun, P.; Bao, J. J. Organomet. Chem. Vol. 696 (2011), p.1570.

Google Scholar

[17] Xu, H.; Gu, S.; Chen, W.; Li, D.; Dou, J. J. Org. Chem. Vol. 76 (2011), p.2448.

Google Scholar

[18] Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. Vol. 13 (1972), p.3769.

Google Scholar

[19] Quesada, E.; Taylor, R. J. K. Tetrahedron Lett. Vol. 46 (2005), p.6473.

Google Scholar

[20] Quesada, E.; Raw, S. A.; Reid, M.; Roman, E.; Taylor, R.J. K. Tetrahedron Vol. 62 (2006), p.6673.

Google Scholar

[21] Aitken, R.; Seth, S. Synlett (1990), p.211.

Google Scholar

[22] Dickson, H. D.; Smith, S. C.; Hinkle, K. W. Tetrahedron Lett. Vol. 45 (2004), p.5597.

Google Scholar

[23] Kuang, C.; Yang, Q.; Senboku, H.; Tokuda, M. Tetrahedron Vol. 61 (2005), p.4043.

Google Scholar

[24] Okutani, M.; Mori, Y. J. Org. Chem. Vol. 74 (2009), p.442.

Google Scholar

[25] Cheng, X.; Jia, J.; Kuang, C. Chin. J. Chem. Vol. 29 (2011), p.2350.

Google Scholar

[26] Shenawi-Khalil, S.; Sonavane, S. U.; Sasson, Y. Tetrahedron Lett. Vol. 53 (2012), p.2295.

Google Scholar

[27] Zhao, M.; Kuang, C.; Yang, Q.; Cheng, X. Tetrahedron Lett. Vol. 52 (2011), p.992.

Google Scholar

[28] Hao, W.; Wang, Y.; Sheng, S.; Cai, M. J. Chem. Res. (2008), p.615.

Google Scholar

[29] Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. Vol. 75 (2010), p.6244.

Google Scholar

[30] Park, K.; Palani, T.; Pyo, A.; Lee, S. Tetrahedron Lett. Vol. 53 (2012), p.733.

Google Scholar

[31] Li, J.; Huang, P. Beilstein J. Org. Chem. Vol. 7 (2011), p.426.

Google Scholar