The Oxidation Mechanism of FeCrAl Alloy Added with Rare Earth Y from First-Principle Study

Article Preview

Abstract:

First-principles calculations have been carried out to investigate the incipient oxidation mechanism of FeCrAl alloy. It is found that Al,Y,Cr atoms energetically prefer surface sites, and the driving force of Y segregation to surface is strongest. The surface segregation of Y, Al and Cr will suppress the outward diffusion of Fe, form the tight coherent films of Al2O3,Cr2O3 and RE oxides which can restrain oxygen inward diffusion, as a result, leading to the decrease of the growth of oxide films. The O adsorption process at Fe surface are found to be spontaneous, and our calculations predict Al, Cr, Y segregation at Fe surface is beneficial for decreasing the oxidation rate of FeCrAl alloy. The interaction between O and Fe, Cr, Al, Y atoms exists both ionic and covalent binding characteristics. Also Al, Y alloying increases ionic and covalent binding between Al, Y and O, which speed selective oxidation of Al and Y, and hence improves the oxidation performance of FeCrAl containing Y alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-197

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Herbelin, M. Mantel and J. Y. Cogne: in: Proc. Int. Conf. On Metal Supported Automotive Catalytic Converters (27-28 Oct. 1997, Wuppertal, Germany), pp.79-92, (Edt. H. Bode), Werkstoff-Informationsgesselschaft mbH, Frankfurt (1997).

Google Scholar

[2] W. J. Quadakkers and M. J. Bennett: Mater. Sci. and Technol. Vol. 10(1994), p.126.

Google Scholar

[3] I. S. Weinbruch, D. Naumenko and W. J. Quadakkers: Mater. and Corro., Vol. 51(2000), p.224.

Google Scholar

[4] D. P. Moon: Mater. Sci. Technol., Vol. 5 (1989), p.754.

Google Scholar

[5] I. M. Allam, D. P. Whittle, J. Stringer: Oxid. Met., Vol. 12 (1978), p.35.

Google Scholar

[6] C. Mennicke, E. Schumann, M. Ruhle, R. J. Hussey, G. I. Sproule, M. L. Graham: J. Oxid. Metals, Vol. 49(1998), p.455.

DOI: 10.1023/a:1018803113093

Google Scholar

[7] D. P. Whittle, J. Stringer: Phil. Trans. R. Soc. A, Vol. 295(1980), p.309.

Google Scholar

[8] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al: Phys. Rev. B, Vol. 46(1992), p.6671.

Google Scholar

[9] M. D. Segall, P. L. D. Lndan, M. J. Probert, et al: J. Phys. Condens. Matter., Vol. 14(2002), p.2717.

Google Scholar

[10] D. Vanderbilt: Phys. Rev. B, Vol. 41(1990), p.7892.

Google Scholar

[11] C. Kittel: Introduction to Solid State Physics, 7th ed. (Wiley, New York 1996).

Google Scholar

[12] S. Y. Liu, J. X. Shang, F. H. Wang and Y. Zhang: J. Phys: Condens Matter, Vol. 21(2009), p.225005.

Google Scholar

[13] H. B. Zhou, S. Jin,  Y. Zhang, G. H. Lu: Sci China: Phys. Mech. Astron., Vol. 54(2011), p.2164.

Google Scholar

[14] M. G. Fontana: Corrosion Engineering. 3th ed. (Mcraw-Hill, New York 1986), P506.

Google Scholar

[15] C. V. Robine: Metall Mater Trans B, Vol. 27(1996), p.65.

Google Scholar

[16] Q. D. Wang, Y. Z. Lu, X. Q. Zeng, W. J. Ding and Y. P. Zhu: Spec. Cast. Nonferr. Alloy, Vol. s1(2002), p.292.

Google Scholar