Tripod-Like β-NaYF4: Ln3+ (Ln = Yb, Er, Tm, Ho) Nanocrystals with Multicolor Upconversion Luminescence

Article Preview

Abstract:

Tripod-like β-NaYF4: Ln3+ (Ln = Yb, Er, Tm, Ho) nanocrystals have been successfully synthesized for the first time by solvothermal method. The results revealed that the as-prepared NaYF4: Ln3+ crystals with pure hexagonal phase consisted of tripod-like particles with 300-500 nm in length and 60-80 nm in diameter. The upconversion (UC) luminescence properties of β-NaYF4: Ln3+ samples were investigated in detail. By changing the dopants species (Ln3+), multicolor (green and blue) UC emissions can be obtained in β-NaYF4: Ln3+ under 980 nm laser diode (LD) excitation. In conclusion, the luminescent branched particles should be of wide potential application as building blocks in the future nanoscience and nanotechnology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-248

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Downing E, Hesselink L, Ralston J, Macfarlane R. Science. 1996; 273: 1185-1189.

Google Scholar

[2] Zhang C, Zhou H-P, Liao L-Y, Feng W, Sun W, Li Z-X, et al. Adv Mater. 2010; 22: 633-637.

Google Scholar

[3] Xiao Q, Bu W, Ren Q, Zhang S, Xing H, Chen F, et al. Biomaterials. 2012; 33: 7530-7539.

Google Scholar

[4] Chen F, Bu W, Zhang S, Liu X, Liu J, Xing H, et al. Adv Funct Mater. 2011; 21: 4285-4294.

Google Scholar

[5] Rumbles G. Nature. 2001; 409: 572-573.

Google Scholar

[6] Stockman M. Nat Mater. 2004; 3: 423-424.

Google Scholar

[7] Wang F, Liu X. Chem Soc Rev. 2009; 38: 976-989.

Google Scholar

[8] Heer S, Kömpe K, Güdel HU, Haase M. Adv Mater. 2004; 16: 2102-2105.

Google Scholar

[9] Menyuk N, Dwight K, Pierce JW. Appl Phys Lett. 1972; 21: 159-161.

Google Scholar

[10] Cao C, Yang HK, Chung JW, Moon BK, Choi BC, Jeong JH, et al. J Am Ceram Soc. 2011; 94: 3405-3411.

Google Scholar

[11] Suzuki S, Teshima K, Wakabayashi T, Nishikiori H, Yubuta K, Shishido T, et al. Crystal Growth & Design. 2011; 11: 4825-4830.

DOI: 10.1021/cg200580z

Google Scholar

[12] Ding M, Huang W, Cao L, Lu C, Song J, Ni Y, et al. Mater Lett. 2012; 86: 58-61.

Google Scholar

[13] Wang M, Liu J-L, Zhang Y-X, Hou W, Wu X-L, Xu S-K. Mater Lett. 2009; 63: 325-327.

Google Scholar

[14] Gao G, Zhang C, Zhou Z, Zhang X, Ma J, Li C, et al. Nanoscale. 2013; 5: 351-362.

Google Scholar

[15] Zhuang J, Wang J, Yang X, Williams ID, Zhang W, Zhang Q, et al. Chem Mater. 2008; 21: 160-168.

Google Scholar

[16] Li C, Quan Z, Yang J, Yang P, Lin J. Inorg Chem. 2007; 46: 6329-6337.

Google Scholar

[17] Chen X, Wang W, Chen X, Bi J, Wu L, Li Z, et al. Mater Lett. 2009; 63: 1023-1026.

Google Scholar

[18] Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR. Chem Mater. 2004; 16: 1244-1251.

DOI: 10.1021/cm031124o

Google Scholar

[19] Zhang F, Wan Y, Yu T, Zhang F, Shi Y, Xie S, et al. Angewandte Chemie International Edition. 2007; 46: 7976-7979.

Google Scholar

[20] Dong H, Sun L-D, Yan C-H. Nanoscale. 2013; 5: 5703-5714.

Google Scholar