On Optimal Functioning of the Aeolian Electro-Power Systems

Article Preview

Abstract:

The paper approaches the possibility of power functioning of the Aeolian systems. Power Aeolian systems, due to high inertia moments and rapid variation in time of the wind speed cannot constantly function on the maximum power point. Therefore it must be considered the matter of determining the optimal functioning speed of the Aeolian device on the basis of evaluating the momentary wind speed in order to get maximum of electric power. The calculation is based upon an original mathematical model for the wind turbine TV and an experimental direct follow of the wind speed in time. Actually, it is presented the way of loading the generator according to the wind speed.etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-351

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Babescu -Maşina Sincronă -Modelare-Identificare-Simulare-, ISBN 973-625-021-0, Editura POLITEHNICA Timişoara, (2003).

Google Scholar

[2] M. Babescu -Surse Statice de Energie Electrică, ISBN 978-973-625-427-7, Editura POLITEHNICA Timişoara, (2007).

Google Scholar

[3] A. Bej-Turbine de vânt-ISBN 973-625-098-9, Editura POLITEHNICA Timişoara, (2003).

Google Scholar

[4] M.C. Mabel and E. Fernandez, Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks, IEEE Trans. Energy Convers., vol. 24, no. 2, pp.459-464 June, (2009).

DOI: 10.1109/tec.2008.2001458

Google Scholar

[5] S. Fan, J.R. Liao, R. Yokoyama, L. Chen, and W. -J. Lee, Forecasting the Wind Generation Using a Two-Stage Network Based on Meteorological Information, IEEE Trans. Energy Convers., vol. 24, no. 2, pp.474-482 June, (2009).

DOI: 10.1109/tec.2008.2001457

Google Scholar

[6] W. Qiao, R.G. Harley, and G.K. Venayagamoorthy, Coordinated Reactive Power Control of a Large Wind Farm and a STATCOM Using Heuristic Dynamic Programming, IEEE Trans. Energy Convers., vol. 24, no. 2, pp.493-503 June, (2009).

DOI: 10.1109/tec.2008.2001456

Google Scholar

[7] J.M. Mauricio, A.E. Leon, A. Gomez-Exposito, and J.A. Solsona, An Adaptive Nonlinear Controler for DFIM-Based Wind Energy Conversion Systems, IEEE Trans. Energy Convers., vol. 23, no. 4, pp.1025-1035 December, (2008).

DOI: 10.1109/tec.2008.2001441

Google Scholar

[8] H. Banakar and B.T. Ooi, Clustering of Wind Farms and its Sizing Impact, IEEE Trans. Energy Convers., vol. 24, no. 4, pp.935-942 December, (2009).

DOI: 10.1109/tec.2008.2001454

Google Scholar

[9] H. Li, Z. Chen, and H. Polinder, Optimization of Multibrid Permanent-Magnet Wind Generator Systems, IEEE Trans. Energy Convers., vol. 24, no. 1, pp.82-92, March, (2009).

DOI: 10.1109/tec.2008.2005279

Google Scholar

[10] R. Fadaeinedjad, G. Moschopoulos, and M. Moallem, The Impact of Tower Shadow, Yaw Error, and Wind Shears on Power Quality in a Wind-Diesel System, IEEE Trans. Energy Convers., vol. 24, no. 1, pp.102-111, March, (2009).

DOI: 10.1109/tec.2008.2008941

Google Scholar

[11] A. Kusiak, H. Zheng, and Z. Song, Short-Term Prediction of Wind Farm Power: A Data Mining Approach, IEEE Trans. Energy Convers., vol. 24, no. 1, pp.125-136, March, (2009).

DOI: 10.1109/tec.2008.2006552

Google Scholar

[12] M. Shahabi, M.R. Haghifam, M. Mohamadian, and S.A. Nabavi-Niaki, Microgrid Dynamic Performance Improvement Using a Doubly Fed Induction Wind Generator, IEEE Trans. Energy Convers., vol. 24, no. 1, pp.137-145, March, (2009).

DOI: 10.1109/tec.2008.2006556

Google Scholar