Preparation and Characterization of Diatomite Supported Cu-Doped TiO2 Photocatalysts

Article Preview

Abstract:

Diatomite supported Cu-doped TiO2 photocatalysts were synthesized by sol-gel method and characterized by X-ray diffraction (XRD), SEM and UV-vis diffuses reflectance of spectroscopy (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue solution under visible light irradiation. The results show that TiO2/diatomite ratio had a great influene on their photocatalytic activities. All prepared Cu-TiO2/diatomite had a better photocatalytic activities in comparison with Cu-TiO2 and the Cu-TiO2(30)/diatomite had higher photocatalytic activity than others. The photocatalytic degradation of methylene blue is due to the breaking of the chormophoric group, rather than the simple decoloration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H Mo, Y. P Zhang, J. J Lamson, R. Y Zhao. Atmospheric Environment, 43 (2009), pp.2229-2246.

Google Scholar

[2] S. B Wang, H.M. Ang, Moses O. Tade. Environment International, 33 (2007), pp.694-705.

Google Scholar

[3] Pantelis A. Pekakis, Nikolaos P. Xekoukoulotakis, Dionissios Mantzavinos. Water Research, 40 (2006), pp.1276-1286.

DOI: 10.1016/j.watres.2006.01.019

Google Scholar

[4] Sadik W A, Nashed A W, El-Demerdash A-G M.J. Photochem. Photobiol. A: Chem, 189 (2007), pp.135-140.

Google Scholar

[5] Yu H, Zhang K, Rossi C. J. Photochem. Photobiol. A: Chem, 188 (2007), pp.65-73.

Google Scholar

[6] Kashif Naeem, Feng Ouyang. Physica B, 405 (2010), pp.221-226.

Google Scholar

[7] L.S. Yoong, F.K. Chong, Binay K. Dutta. Energy, 34 (2009), p.1652–1661.

Google Scholar

[8] C. M Fan, P. Xue, Y. P Sun. Journal of rare earths, 24 (2006), pp.309-313.

Google Scholar

[9] X. W Cheng, X. J Yua, Z. P Xing. Applied Surface Science, 258 (2012), pp.3244-3248.

Google Scholar

[10] Z. L He, W. X Que, J. Chen, Y. C He, G. F Wang. Journal of Physics and Chemistry of Solids, 74 (2013), p.924–928.

Google Scholar

[11] H. Tian, J. F Ma, K. Li, J. J Li. Ceramics International, 35 (2009), pp.1289-1292.

Google Scholar

[12] H.Y. Zhu, J. Orthman, J.Y. Li, J. C Zhao, G.J. Churchman and E.F. Vansant. Chem. Master, 14 (2002), p.5037.

Google Scholar

[13] D. Beydoun, R. Amal, G.K. -C. Low, S. McEvoy. J. Phys. Chem, B, 104 (2000), p.4387.

Google Scholar

[14] M.V. Shankar, S. Anandan, N. Venkatachalam, B. Arbindoo, V. Murugesan. Chemosphere, 63 (2006), pp.1014-1021.

Google Scholar

[15] S. zhou, J. Lv, L.K. Guo, G.Q. Xu, D.M. Wang, Z.X. Zheng and Y.C. Wu. Applied Surface Science, 258 (2012), pp.6136-6141.

Google Scholar

[16] B. Wang, Q. Li, W. Wang, Y. Li ,J. P Zhai. Applied Surface Science, 257 (2011), pp.3473-3479.

Google Scholar

[17] X. W Cheng, X. J Yu , Z. P Xing. Applied Surface Science, 258 (2012), pp.3244-3248.

Google Scholar

[18] C. C Wang, C. K Lee, M. D Lyu, L. C Juang. Dyes and pigments, 76 (2008), pp.817-824.

Google Scholar