The Effect of Intercritical Deformation on Microstructure Development in Thermomechanically-Processed Low-Silicon TRIP-Assisted Steels

Article Preview

Abstract:

The effect of intercritical deformation on development of microstructure in low-silicon contents multiphase TRIP-assisted steels were investigated by laboratory simulation of controlled-thermomechanical processing in an automated hot compression testing machine. A typical multiple cooling stages TMP program was applied and samples were deformed in intercritical region to different strains. Microstructures of samples were characterized by optical and scanning electron microscopy, XRD and Mössbauer. The result indicated that intercritical straining increases volume fraction of polygonal ferrite and granular-type retained austenite particles, but reduces fraction of bainite. The increase in retained austenite volume fraction is attributed to strain-assisted diffusion of carbon and to refinement of retained austenite particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Grajcar, R. Kuziak, and W. Zalecki, Arch. Civil Mech. Eng. Vol. 12 (2012), p.334.

Google Scholar

[2] P. Jacques, K. Eberle, P. Harlet and F. Delannay, Proc. of 40th MWSP Conference, ISS, 239 (1998).

Google Scholar

[3] S.M.K. Hosseini, A. Zarei-Hanzaki, M.J. Yazdanpanah, and S. Yue, Mater. Sci. Eng. A, Vol. 374 (2004), p.122.

Google Scholar

[4] P. Jacques, J. Ladriere and F. Delannay, Metall. Trans. A, Vol. 32 (2001), No. 11, p.2759.

Google Scholar

[5] A. Zarei–Hanzaki, PhD Thesis, McGill University, Montreal, Quebec, Canada (1994).

Google Scholar

[6] I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Trans. A, Vol. 35 (2004), p.2331.

Google Scholar

[7] S.M.K. Hosseini, A. Zarei-Hanzaki, E. Essadiqi, and S. Yue, Mat. Sci. and Technol., Mater. Sci. Technol., Vol. 24 (2008), p.1354.

Google Scholar

[8] S.M.K. Hosseini, A. Zarei-Hanzaki, and S. Yue, Proc. of 2nd International Conf. on Recent Trends in Structural Steels- Comat , Czech Republic, 156 (2012).

Google Scholar

[9] A. Zarei-Hanzaki, R. Pandi, P.D. Hodgson, and S. Yue, Metall. Trans. A, Vol. 24 (1993), No. 12, p.2657.

Google Scholar

[10] F.S. LePera, Journal of Metals, 1980, p.38.

Google Scholar

[11] S. Bandoh, O. Matsmura and Y. Sakuma, Trans. ISIJ, Vol. 28 (1988), p.69.

Google Scholar

[12] B.D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison-Wesley Publ. Co. Inc., (1978).

Google Scholar

[13] A. Zareai-Hanzaki, P.D. Hodgson, S. Yue, Metall. Trans. A, Vol. 28 (1997), p.2405.

Google Scholar

[14] S. Godet, Ph. Harlet, F. Delannay and P. Jacques, , Int. Conf. on TRIP-Aided High Strenrgth Ferrous Alloys, ed. B.C. DeCooman, GRIPS, Ghent, 135 (2002).

Google Scholar

[15] R. Varano and S. Yue, 43rd MWSP Conf. Proc., ISS, 2001, p.31.

Google Scholar

[16] G. Glover, C.M. Sellars, Metall. Trans. A, Vol. 4 (1973), p.765.

Google Scholar

[17] H.K.D.H. Bhadeshia, Progress in Materials Science, Vol. 29 (1985), p.321.

Google Scholar

[18] P. Shipway H.K.D.H. Bhadeshia, Mat. Sci. and Technol., Vol. 11 (1995), p.1116.

Google Scholar

[19] S.S. Singh and H.K.D.H. Bhadeshia, Mater. Sci. Technol., Vol. 12 (1996), p.610.

Google Scholar

[20] H. Luo, L. Zhao, S.O. Kruijver, J. Sietsma, and S. van der Zwaag., ISIJ International, Vol. 43 (2003), No. 8, p.1219.

Google Scholar

[21] W. Bleck, S. Papaefthymion and Frehn, Steel Res. Int., Vol. 75 (2004), p.704.

Google Scholar