The Optimal Information Rates of the Graph Access Structures on Seven Participants

Article Preview

Abstract:

The information rate is an important metric of the performance of a secret-sharing scheme. In this paper, we deal with determining the exact values for the optimal information rates of the six graph access structures and improving the information rate of a graph access structure on seven participants, which remained as open problems in Song's and Wang's paper([1,2]). We prove that the optimal information rate for each of the six graph access structures is equal to 4/7

You might also be interested in these eBooks

Info:

Periodical:

Pages:

596-601

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Song, Z.H. Li, W. C. Wang, The information rate of secret sharing schemes based on seven participants by connect graphs,J. Recent advance in computer science and information engineering, CSIE 2011, Lecture notes in electrical engineering, vol. 127, 2012, pp.637-645.

DOI: 10.1007/978-3-642-25769-8_90

Google Scholar

[2] W. C. Wang, Z.H. Li and Song Y, The optional information rate of perfect secret sharing schemes,J. In: Proceedings 2011 International Conference on Business Management and Electronic Information. vol. 2, May, 2011, pp.207-212.

DOI: 10.1109/icbmei.2011.5917883

Google Scholar

[3] E.F. Brickell and D.R. Stinson, Some improved bounds on the information rate of perfect secret sharing schemes, J. Journal of Cryptology, vol. 5, pp.153-166, (1992).

DOI: 10.1007/bf02451112

Google Scholar

[4] C. Blundo, A. De Santis, D.R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes,J. Journal of Cryptology, vol. 8, pp.39-64, (1995).

DOI: 10.1007/bf00204801

Google Scholar

[5] C. Padró and L. Vázquez, Finding lower bounds on the complexity of secret sharing schemes by linear programming, J. Discrete Applied Mathematics, vol. 161, pp.1072-1084, (2013).

DOI: 10.1016/j.dam.2012.10.020

Google Scholar

[6] D .R. Stinson, An explication of secret sharing schemes, J. Designs, Codes and Cryptography, vol. 2, pp.357-390, (1992).

DOI: 10.1007/bf00125203

Google Scholar

[7] W. Jackson and K.M. Martin, Perfect secret sharing schemes on five participants, J. Designs, Codes and Cryptography, vol. 9, pp.267-286, (1996).

DOI: 10.1007/bf00129769

Google Scholar

[8] M. van Dijk, On the information rate of perfect secret sharing schemes, , J. Designs, Codes and Cryptography, vol. 6, pp.143-169, (1995).

DOI: 10.1007/bf01398012

Google Scholar

[9] H. M. Sun and B. L. Chen, Weighted decomposition construction for perfect secret sharing schemes, , J. Computers & Mathematics with Applications, vol. 43, pp.877-887, (2002).

DOI: 10.1016/s0898-1221(01)00328-5

Google Scholar

[10] M. Gharahi and M.H. Dehkordi, The complexity of the graph access structures on six participants. Designs, J. Codes and Cryptography, vol. 67, pp.169-173, (2013).

DOI: 10.1007/s10623-011-9592-z

Google Scholar

[11] R. M. Capocelli, A . De Santis, L. Garg ano and U . Vaccaro. On the size of shares of secret sharing schemes, J, Journal of Cryptology, vol. 6, pp.157-168, (1993).

DOI: 10.1007/bf00198463

Google Scholar

[12] T .M. Cover and J.A. Thomas. Elements of information theory. 2nd ed. New York: Wiley, (2006).

Google Scholar

[13] D. R. Stinson. Cryptography theory and practice. 3rded. London, New York: Chapman & Hall/CRC, Boca Raton, (2006).

Google Scholar

[14] L. Csirmaz, The size of a share must be large, J. Journal of Cryptology, vol. 10 , pp.223-231, (1997).

DOI: 10.1007/s001459900029

Google Scholar