Conjugate Heat Transfer in Two Partial Enclosures Connected by Refrigerator/Heater

Article Preview

Abstract:

Natural convection conjugated by two partial enclosures, connected by refrigerator/heater, has been numerically studied. Thick walls facing the opening are heated in one zone and cooled in the other zone respectively by constant heat fluxes. The isothermals, streamlines and heatlines are presented for varied governing parameters, Rayleigh numbers, Ra from 103 to 107, solid thick walls to fluid thermal conductivity ratio λS from 0.01 to 10.0, cavity aspect ratio, Ar from 1.0 to 8.0, and refrigeration coefficient, COR from 0.1 to 10.0. The streamlines and heatlines visualize the real fluid flow and heat transfer process or structures. Anti-clock streamlines are generated in both zones. Variations of extreme temperatures, Tmax or Tmin and dimensionless volumetric flow rate on the opening, M, along with these governing parameters are also presented in tables or figures. Correlations of extreme temperatures with Ra, λS and COR are given for varied Ar. At last, the unified correlations of with those parameters also are presented and analyzed. The results show that the common trends and characteristics of heat and fluid flow independent of Ar for both zones are summarized, though the convection is amplified with increased Ar.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

1451-1457

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Milorad, Y. Francis, L. Mark, Influence of heat rejected by air conditioners to flow inside a recessed space with one plate, ASHRAE Transactions, Vol. 108 (2002), pp.330-337.

Google Scholar

[2] T. T. Chow, Z. Lin, Q. W. Wang, J. W. Z. Lu, Studying thermal performance of split air-conditioners at building re-entrant via computer simulation, in: Proceedings of the ROOMVENT 2002, Copenhagen, Denmark, (2002).

Google Scholar

[3] N. C. Markatos, M. R. Malin, Mathematical modeling of buoyancy-induced smoke flow in enclosures, Int. J. Heat Mass Transfer Vol. 25 (1982), pp.63-75.

DOI: 10.1016/0017-9310(82)90235-6

Google Scholar

[4] C. P. Mao, A. C. Fernandez-Pello, J. A. C. Humphrey, An investigation of steady wall-ceiling and partial enclosure fires, ASME Journal of Heat Transfer Vol. 106 (1984), pp.221-228.

DOI: 10.1115/1.3246639

Google Scholar

[5] A. Schaelin, J. V. D. Maas, A. Moser, Simulation of airflow through large openings in buildings, ASHRAE Transactions Vol. 98 (1992), pp.319-328.

Google Scholar

[6] Y. Jiang, Q. Chen, Buoyancy-driven single-sided natural ventilation in buildings with large openings, Int. J. Heat Mass Transfer Vol. 46 (2003), pp.973-988.

DOI: 10.1016/s0017-9310(02)00373-3

Google Scholar

[7] S. Ostrach, Natural convection in enclosures, ASME Journal of Heat Transfer Vol. 110 (1988), pp.1175-1190.

DOI: 10.1115/1.3250619

Google Scholar

[8] F. P. Incropera, Convection heat transfer in electronic equipment cooling, ASME Journal of Heat Transfer Vol. 110 (1988), pp.1097-1111.

DOI: 10.1115/1.3250613

Google Scholar

[9] H. Skok, S. Ramadhyani, R. J. Schoenhals, Natural convection in a side-facing open cavity, Int. J. Heat and Fluid Flow Vol. 12 (1991), pp.36-45.

DOI: 10.1016/0142-727x(91)90006-h

Google Scholar

[10] Y. L. Chan, C. L. Tien, Laminar natural convection in shallow open cavities, ASME Journal of Heat Transfer Vol. 108 (1986), pp.305-309.

DOI: 10.1115/1.3246920

Google Scholar

[11] Y. L. Chan, C. L. Tien, A numerical study of two-dimensional laminar natural convection in shallow open cavities, Int. J. Heat Mass Transfer Vol. 28 (1983), pp.603-612.

DOI: 10.1016/0017-9310(85)90182-6

Google Scholar

[12] F. Penot, Numerical calculation of two-dimensional natural convection in isothermal open cavities, Numer. Heat Transfer Vol. 5 (1982), pp.421-437.

DOI: 10.1080/10407788208913457

Google Scholar

[13] P. Le Quere, J. A. C. Humphrey, F. S. Sherman, Numerical calculation of thermally driven two-dimensional unsteady laminar flow in cavities of rectangular cross section, Numer. Heat Transfer Vol. 4 (1981), pp.249-283.

DOI: 10.1080/01495728108961792

Google Scholar

[14] J. A. C. Humphery, W. M. To, Numerical simulation of buoyant turbulent flow -Ⅱ. Free and mixed convection in a heated cavity, Int. J. Heat Mass Transfer Vol. 29 (1986), pp.593-610.

DOI: 10.1016/0017-9310(86)90092-x

Google Scholar

[15] O. Polat, E. Bilgen, Conjugate heat transfer in inclined open shallow cavities, Int. J. Heat Mass Transfer Vol. 46 (2003), pp.1563-1573.

DOI: 10.1016/s0017-9310(02)00427-1

Google Scholar

[16] S. Kimura, A. Bejan, The Heatline, visualization of convective heat transfer, ASME Journal of Heat Transfer Vol. 105 (1983), pp.916-919.

DOI: 10.1115/1.3245684

Google Scholar

[17] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington D.C., (1980).

Google Scholar

[18] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, (2002).

Google Scholar

[19] V. A. F. Costa, Unification of the streamline, heatline and massline methods for the visualization of two-dimensional transport phenomena, Int. J. Heat Mass Transfer 42(1999) 27-33.

DOI: 10.1016/s0017-9310(98)00138-0

Google Scholar

[20] F.Y. Zhao, G.F. Tang, D. Liu, Conjugate natural convection in enclosures with external and internal heat sources, Int. J. Eng. Sci. Vol. 44 (2006), p.148–165.

DOI: 10.1016/j.ijengsci.2005.10.006

Google Scholar

[21] D. Liu, F.Y. Zhao, G.F. Tang, Conjugate heat transfer in an enclosure with a centered conducting body imposed sinusoidal temperature profiles on one side, Numer. Heat Transfer, Part A Vol. 53 (2008), pp.204-223.

DOI: 10.1080/10407780701454030

Google Scholar

[22] F.Y. Zhao, D. Liu, G.F. Tang, Conjugate heat transfer in square enclosures, Heat Mass Transfer Vol. 43 (2007), pp.907-922.

DOI: 10.1007/s00231-006-0136-4

Google Scholar

[23] F.Y. Zhao, D. Liu, G.F. Tang, Application issues of the streamline, heatline and massline for conjugate heat and mass transfer, Int. J. Heat Mass Transfer Vol. 50 (2007), pp.320-334.

DOI: 10.1016/j.ijheatmasstransfer.2006.06.026

Google Scholar

[24] D. Liu, F.Y. Zhao, G.F. Tang, Thermosolutal convection in a saturated porous enclosure with concentrated energy and solute sources, Energy Conversion Management Vol. 49 (2008), pp.16-31.

DOI: 10.1016/j.enconman.2007.06.003

Google Scholar