Investigation of Thermoelectric Power Generation Module on Waste Heat Recovery in a Downdraft Gasifier

Article Preview

Abstract:

In this study, the thermoelectric power generation (TEG) module is used to recover waste heat from a downdraft gasifier. The performance and optimal operating temperature of TEG module are studied at different locations on the surface wall of catalyst reactor. The simulation model of downdraft gasifier is performed by using the Fire Dynamics Simulator (FDS), its appropriate for the low-speed, thermally-driven flow simulation with an emphasis on incomplete combustion process. The results demonstrate that the simulation temperature of catalyst reactor surface is around 200°C~300°C which is used to convert heat into electricity by TEG module. In summary, the TEG modulus power per unit area can reach 857W/m2 with temperature difference of 140°C and output power attain at least 2.04kW if TEG modulus is applied on the improved downdraft gasifier system (IDGS).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

437-440

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Son, S. J. Yoon, Y. K. Kim, J. G. Lee: Biomass Bioenerg. Vol. 35 (2011), p.4215.

Google Scholar

[2] P. Plis, R.K. Wilk: Energy Vol. 36 (2011), p.3838.

Google Scholar

[3] P. N. Sheth, B. V. Babu: Bioresour. Technol. Vol. 100 (2009), p.3127.

Google Scholar

[4] K. McGrattan, B. Klein, S. Hostikka,J. Floyd, in: Fire Dynamics Simulator (Version 5) User's Guide, National Institute of Standards and Technology, NIST Special Publication1019-5 (2007).

DOI: 10.6028/nist.sp.1019-5

Google Scholar

[5] K. McGrattan, H. Baum, S. Hostikka, J. Floyd, R. Rehm, in: Fire Dynamics Simulator (Version 5) Technical Reference Guide Volume 1: Mathematical Model, National Institute of Standards and Technology, NIST Special Publication1018-5 (2009).

DOI: 10.6028/nist.sp.1018-5

Google Scholar

[6] E. Kim, J.P. Woycheese, N.A. Dembsey: Fire Technol. Vol. 44 (2008), p.137.

Google Scholar

[7] A. K. Jain, J. R. Goss: Biomass Bioenerg. Vol. 18 (2000), p.249.

Google Scholar

[8] H.K. Ma, Y.T. Li, C.P. Lin, C.S. Lim: 9th Asia-Pacific Conference on Combusion. Gyeongju: Korea (2013).

Google Scholar

[9] S. Kim, S. Park, S. Kim, S. H. Rhi: Journal of Electronic Materials Vol. 40 (2011), p.812.

Google Scholar

[10] D. Champier, J.P. Bedecarrats, M. Rivaletto, F. Strub: Energy Vol. 35 (2010), p.935.

DOI: 10.1016/j.energy.2009.07.015

Google Scholar

[11] P. J. Lee, C. C. Hsu, Y. N. Liu, R. H. Uang, L. S. Chao, S. C. Tseng: 29th International Conference on Thermoelectrics. Shanghai: China (2010), P. 166.

Google Scholar

[12] Y. N. Liu, C. C. Hsu, J. D. Hwang: 32th International Conference on Thermoelectrics. Kobe: Japan (2013), P. 297.

Google Scholar