Biomass Oxygen-Enriched Gasification in a Pressurized Fluidized Bed for Production of Middle/High Heat-Value Fuel Gas

Article Preview

Abstract:

For biomass gasification, the high tar and carbon monoxide contents and the low heat value of fuel gas are problems to be solved, which leading to the poor operating conditions of the completed projects in China. Therefore, a new technology of biomass oxygen-enriched gasification in pressurized fluidized bed is proposed. Coupling the technologies of pressurized biomass oxygen-enriched gasification at low temperature, high-temperature gasification and melting, steam reforming and hydrocarbon synthesis, the high gasification efficiency, tar cracking and gas reforming shall be realized, and the middle/high heat value gas which meets the national standards will be produced. ASPEN PLUS simulation was carried out for biomass oxygen-enriched gasification. Both the equivalent ratio and gas yield of rice husk are lower than that of the wood sawdust, while the gas calorific values are equivalent. Considering the gas yield, the calorific value and economy, the optimum operating conditions are obtained: the gasification temperature at 1200 °C, the oxygen purity at 0.9, the equivalent ratio at about 0.25, the S/B ratio at 0.1~0.2. The gas yield could reach 1.9 m3/kg, and the gas calorific value was above 11 MJ/m3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

450-455

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Cao, Y. Wang, J.T. Riley and W.P. Pan: Fuel Process. Technol. Vol. 87 (2006), pp.343-353.

Google Scholar

[2] T. Hanaoka, S. Inoue, S. Uno, T. Ogi and T. Minowa: Biomass Bioenergy Vol. 28 (2005), pp.69-76.

DOI: 10.1016/j.biombioe.2004.03.008

Google Scholar

[3] T.R. McLendon, A.P. Lui, R.L. Pineault, S.K. Beer and S.W. Richardson: Biomass Bioenergy Vol. 26 (2004), pp.377-388.

DOI: 10.1016/j.biombioe.2003.08.003

Google Scholar

[4] S. Rapagna, N. Jand and P.U. Foscolo: Int. J. Hydrogen Energy Vol. 23 (1998), pp.551-557.

Google Scholar

[5] C.Z. Wu and X.L. Yin: New Energy Vol. 21 (1999), pp.30-35.

Google Scholar

[6] J. Kopyscinski, T.J. Schildhauer and S.M.A. Biollaz: Fuel Vol. 89 (2010), pp.1763-1783.

Google Scholar

[7] P.M. Lv, J. Chang, Z.H. Xiong, C.Z. Wu and Y. Chen: J. Fuel Chem. Technol. Vol. 31 (2003), pp.305-310.

Google Scholar

[8] G. Schuster, G. Loffler and K.W.H. Hofbauer: Bioresour. Technol. Vol. 77 (2001), pp.71-79.

Google Scholar

[9] E. Rensfelt: Bioenergy Vol. 84 (1984), pp.18-21.

Google Scholar

[10] C.Z. Wu, X.L. Yin, B.Y. Xu, Z.F. Luo and P. Liu: Acta Energiae Solaris Sinica Vol. 18 (1997), pp.237-242.

Google Scholar

[11] J.S. Zhou, Q. Chen, H. Zhao, X. Cao, Q. Mei, Z.Y. Luo and K.F. Cen: Biotechnol. Adv. Vol. 27 (2009), pp.606-611.

Google Scholar

[12] B.S. Jin, Y.J. Huang, Z.P. Zhong, W.Q. Zhong, R. Xiao, G. Xiao and M.R. Chen, Chinese patent 200710022955. 7. (2007).

Google Scholar

[13] A.A. Boateng, W.P. Walawender, L.T. Fan and C.S. Chee: Bioresour. Technol. Vol. 40 (1992), pp.235-239.

Google Scholar

[14] F.S. Lau: Biomass Bioenergy Vol. 15 (1998), pp.233-238.

Google Scholar

[15] M. Siedlecki, W. de Jong: Biomass Bioenergy Vol. 35 (2011), p. S40-S62.

Google Scholar

[16] D. Su, Z. Zhou, J. Xie, L. Lang, X. Yin and C. Wu: Trans. Chin. Soc. Agric. Machinery Vol. 42 (2011), pp.100-104.

Google Scholar

[17] M.B. Nikoo and N. Mahinpey: Biomass Bioenergy Vol. 32 (2008), pp.1245-1254.

Google Scholar

[18] L.H. Shen, Y. Gao and J. Xiao: Biomass Bioenergy Vol. 32 (2008), pp.120-127.

Google Scholar

[19] E. Jannelli and M. Minutillo: Waste Manage. Vol. 27 (2007), pp.684-690.

Google Scholar

[20] Y.H. Zhao, W. Hao and Z.H. Xu: Energy Convers. Manage. Vol. 47 (2006), pp.1416-1428.

Google Scholar

[21] J. Gil, M. P. Aznar, M. A. Caballero, E. Frances and J. Corella: Energy Fuels Vol. 11 (1997), pp.1109-1118.

Google Scholar

[22] F. Weiland, H. Hedman, M. Marklund, H. Wiinikka, O. Öhrman and R. Gebart: Energy Fuels Vol. 27 (2013), pp.932-941.

DOI: 10.1021/ef301803s

Google Scholar