Viscosity of Methylbenzene in [Bmim][BF4] and [Bmim][PF6] Ionic Liquids

Article Preview

Abstract:

To well know the properties of ionic liquid mixtures, the viscosity of the binary mixtures containing the methylbenzene and imidazole ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4] or 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF6]) were measured. Within the temperature range from 298.15 K to 308.15 K, the viscosity of the four binary systems decreased sharply as the increase of temperature. The viscosity decreased slowly in the temperature range from 308.15 K to 338.15 K. The viscosity also decreased with decreasing of the mole fraction of ionic liquid. The viscosity of methylbenzene in the imidazole ionic liquids was in sequence: [Bmim][BF4] < [Bmim][PF6]. The experimental viscosity values had been correlated using the binary parameters of Vogel-Fulcher-Tamman equation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

125-130

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Yen, J.J. Horng. J. Environ. Sci. Heal. A. Vol. 44 (2009), pp.1424-1429.

Google Scholar

[2] J.J. Li, R.J. Lu, B.J. Dou, C.Y. Ma, Q.H. Hu, Y. Liang. Environ. Sci. Technol. Vol. 46(2012), pp.12648-12654.

Google Scholar

[3] M. Yao, Q. Zhang, D.W. Hand, D. Perram, R. Taylor. J. Air. Waste. Manage. Vol. 59 (2009), pp.31-36.

Google Scholar

[4] S. Albonetti, R. Bonelli, R. Delaigle, C. Femoni, E. Gaigneaux, V. Morandi. Appl. Catal. A-gen. Vol. 372 (2010), pp.138-146.

DOI: 10.1016/j.apcata.2009.10.029

Google Scholar

[5] G. Moussavi, M. Mohseni. Chemosphere. Vol. 72 (2008), pp.1649-1654.

Google Scholar

[6] A.F. Stewart, M.P. Jennifer, R.M. Aust. J. Chem. Vol. 57 (2004), pp.113-119.

Google Scholar

[7] Á. Kamps, Á.P. Kampsa, D. Tumaa, G. Maurer. Fluid. Phase. Equilibr. Vol. 260 (2007), pp.3-8.

Google Scholar

[8] M.B. Shiflett, A. Yokozeki. Fluid. Phase. Equilibr. Vol. 294 (2010), pp.105-113.

Google Scholar

[9] U. Domańska, A. Marciniak. J. Chem. Thermodyn. Vol. 37 (2005) pp.577-585.

Google Scholar

[10] Y.Y. Jiang, C. Guo, H.Z. Liu. China Particuology. Vol. 5 (2007), pp.130-133.

Google Scholar

[11] J. García, J.S. Torrecilla, A. Fernández, M. Oliet, F. Rodríguez. J. Chem. Thermodyn. Vol. 42 (2010), pp.144-150.

Google Scholar

[12] R.M. Maduro, M. Aznar. Fluid. Phase. Equilibr. Vol. 265 (2008), pp.129-138.

Google Scholar

[13] Y. Huo, S.Q. Xia, S.Z. Yi, P.S. Ma. Fluid. Phase. Equilibri. Vol. 276 (2009), pp.46-52.

Google Scholar

[14] A.L. Ren, D.D. Zhang, E.H. Duan, B. Guo, J.Z. Chen. Advanced Materials Research. Vol. 393-395 (2012), pp.1328-1333.

Google Scholar

[15] M.M. Taib, A.K. Ziyada, C.D. Wilfred, T. Murugesan. J. Mol. Liq. Vol. 158 (2011), pp.101-104.

Google Scholar

[16] M. Kanakuboa, H. Nanjoa, T. Nishidab, J. Takanob. Fluid Phase Equilib. Vol. 302 (2011), pp.10-13.

Google Scholar

[17] D. Tomida, A. Kumagai, K. Qiao, C. Yokoyama. Int. J. Thermophys. Vol. 27 (2006), pp.39-47.

Google Scholar

[18] M. Hasan, A.B. Sawanta, R.B. Sawanta, P.G. Loke. J. Chem. Thermodyn. Vol. 43 (2011), pp.1389-1394.

Google Scholar

[19] Z.M. Liu, W.Z. Wu, B.X. Han, Z.X. Dong, G.Y. Zhao, J.Q. Wang, T. Jiang, G.Y. Yang. Chem. Eur. J. Vol. 9 (2003), pp.3897-3903.

Google Scholar