The Effect of Iron Doping on the Performance of Mn/TiO2 Catalysts for NO Reduction with NH3 at Low Temperature

Article Preview

Abstract:

The catalysts of Mn/TiO2, Fe/TiO2 and Mn-Fe/TiO2 prepared by coprecipitation method were investigated for low temperature selective catalytic reduction of NO with NH3. The catalytic activity and SO2 resistance of these three catalysts were tested and the properties of the catalysts were characterized by using N2-BET, XRD, H2-TPR, NH3-TPD methods. It was found that the doping of iron reduced the catalytic activity of Mn/TiO2 catalyst at low temperature and also has an adverse effect for its SO2 resistance at the same time. The decrease of surface area , redox ability and surface acid sites caused by doping of iron might be the main reasons for poor performance of this catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

1415-1420

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Guo, W. Pan, X. Zhang, J. Ren, Q. Jin, H. Xu, J. Wu: Fuel Vol. 90(2011), p.3297.

Google Scholar

[2] B. Jiang, Y. Liu, Z. Wu: J. Hazard. Mater. Vol. 162(2009), p.1249.

Google Scholar

[3] Q. Zhang, C. Qiu, H. Xu, T. Lin, Z. Lin, M. Gong, Y. Chen: Catal. Today Vol. 175(2011), p.171.

Google Scholar

[4] B. Shen, T. Liu, N. Zhao, X. Yang, L. Deng: J. Environ. Sci. Vol. 22(2010), p.1447.

Google Scholar

[5] S. M. Lee, K. H. Park, S. S. Kim, D. W. Kwon, S. C. Hong: J. Air Waste Manage. Assoc. Vol. 62(2012), p.1085.

Google Scholar

[6] S. Yang, C. Wang, J. Li, N. Yan, L. Ma, H. Chang: Appl. Catal. B: Environ. Vol. 110(2011), p.71.

Google Scholar

[7] Y. J. Kim, H. J. Kwon, I. Heo, I. Nam, B. K. Cho, J. W. Choung, M. Cha, G. K. Yeo: Appl. Catal. B: Environ. Vol. 126(2012), p.9.

Google Scholar

[8] M. Kang, E. D. Park, J. M. Kim, J. E. Yie: Catal. Today Vol. 111(2006), p.236.

Google Scholar

[9] Z. Wu, R. Jin, H. Wang, Y. Liu: Catal. Commun. Vol. 10(2009), p.935.

Google Scholar

[10] G. Qi, R. T. Yang: J. Phys. Chem. B Vol. 108(2004), p.15738.

Google Scholar

[11] F.C. Buciuman, F. Patcas, T. Hahn: Chem. Eng. Process Vol. 38(1999), p.563.

Google Scholar

[12] M. Koebel, G. Madia, M. Elsener: Catal. Today Vol. 73(2002), p.239.

Google Scholar

[13] M. Caspu, O. Kröcher, M. Elsener: Appl. Catal. B: Environ Vol. 88(2009), p.413.

Google Scholar

[14] P. Forzatti: Catal. Today Vol. 62(2000), p.51.

Google Scholar

[15] X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo, K. Cen: Catal. Commun. Vol. 11(2010), p.465.

Google Scholar

[16] Y. Liu, M. Luo, Z. Wei, Q. Xin, P. Ying, C. Li: Appl. Catal. B: Environ. Vol. 29 (2001), p.61.

Google Scholar

[17] H. Wang, X. Chen, S. Gao, Z. Wu, Y. Liu, X. Weng: Catal. Sci. Technol. Vol. 3(2013), p.715.

Google Scholar

[18] R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu: Chemosphere Vol. 78(2010), p.1060.

Google Scholar

[19] F. Lónyi, J. Valyon, J. Engelhardt, F. Mizukami: J. Catal. Vol. 160(1996), p.279.

Google Scholar

[20] E. Y. Choi, I. S. Nam, Y. G. Kim: J. Catal. Vol. 161(1996), p.597.

Google Scholar