Removal of Indigo Carmine by Bacterial Biogenic Mn Oxides

Article Preview

Abstract:

Indigo carmine (IC) is one of the oldest, most important and highly toxic dyes used and released in the effluents of many industries, such as textile, paper and plastics. Biogenic Mn oxides (BMO) were prepared by culturing Marinobacter sp. MnI7-9 in presence of Mn (II). The Point of Zero Charge (PZC) of the BMO is 7.5 by salt titration method. The surface area (BET) is 27.68 m2 g-1 by the nitrogen adsorption-desorption method. The adsorption kinetics of low concentration IC (5 mg L-1) on the BMO fit the pseudo-first order model, while the adsorption kinetics of higher concentration IC (20 mg L-1) fit the pseudo-second order model. Intra-particle diffusion is an important rate-controlling step. The equilibrium adsorption data fit well in the Langmuir isotherm equation. The maximal adsorption capacity is 115.61 mg g-1 at 25¡æ. A larger IC removal amount can be obtained when the amount of the BMO is 2 g L-1 at pH 6.5. These results suggest that the BMO can be used as an efficient material for IC removal from aqueous solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

1779-1783

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Li, Y.P. Luo and Z.Y. Su: Environ. Pollut. Vol. 147 (2007), p.168.

Google Scholar

[2] W. Wang, Z. Shao, Y. Liu and G. Wang: Microbiology Vol. 155(2009) , p. (1989).

Google Scholar

[3] S. Liao, J. Zhou, H. Wang, X. Chen, H. Wang and G. Wang: Geomicrobiol J. Vol. 30 (2013), p.150.

Google Scholar

[4] F. Meerburg, T. Hennebel, L. Vanhaecke, W. Verstraete and N. Boon: Microb. Biotechnol. Vol. 5(3) (2012), p.388.

Google Scholar

[5] S. Liao, L. Ren, D. Zhu, W. Zhou, J. Cui and G. Liu: Commun. Soil. Sci. Plan. Vol. 42(7) (2011), p.768.

Google Scholar

[6] V.K. Gupta, R. Jain, S. Malathi and A. Nayak: J. Colloid Interface Sci. Vol. 348 (2010), p.628.

Google Scholar

[7] S.M. de Oliveira Brito, H.M.C. Andrade, L.F. Soares and R.P. de Azevedo: J. Hazard. Mater. Vol. 174 (2010), p.84.

Google Scholar

[8] Y.S. Ho and C.C. Chiang: Adsorption. Vol. 7 (2001), p.139.

Google Scholar

[9] Y.S. Ho and G. McKay: Process Safe. Environ. Protect. Vol. 76B (1998), p.183.

Google Scholar

[10] R. Uma, C. Vimal, D. Indra and H. Dilip: J. Environ Manage. Vol. 90 (2009), p.710.

Google Scholar

[11] N. Kannan and M.M. Sundaram: Dyes Pigments. Vol. 51 (2001), p.25.

Google Scholar

[12] K.G. Bhattacharyya and A. Sharma: Dyes Pigments. Vol. 65(2005), p.51.

Google Scholar

[13] M. Dogan, H. Abak and M. Alkan: J. Hazard. Mater. Vol. 164 (2009), p.172.

Google Scholar

[14] A. Ozcan, E. M. Oncu and A. S. Ozcan: Colloid Surface A. Vol. 277 (2006), p.90.

Google Scholar

[15] L. Zhou, J. Jin, Z. Liu, X. Liang and C. Shang: J. Hazard Mater. Vol. 185 (2011) , p.1045–1052.

Google Scholar

[16] A.G. S. Prado, J. D. Torres, E. A. Faria and S. C. L. Dias: J. Colloid Interface Sci. Vol. 277 (2004), p.43.

Google Scholar