[1]
B. Pan, P. Ning and B. Xing: Part IV—sorption of hydrophobic organic contaminants, Environmental Science and Pollution Research. Vol. 15 (2008), pp.554-564.
DOI: 10.1007/s11356-008-0051-y
Google Scholar
[2]
J. Hou, B. Pan, X. Niu, J. Chen and B. Xing: Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A, Environmental Pollution. Vol. 158(2010), pp.2826-2832.
DOI: 10.1016/j.envpol.2010.06.023
Google Scholar
[3]
R.P. Schwarzenbach and J. Westall: Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies, Environmental science & technology. Vol. 15(1981), pp.1360-1367.
DOI: 10.1021/es00093a009
Google Scholar
[4]
D.E. Kile, C.T. Chiou, H. Zhou, H. Li and O. Xu: Partition of nonpolar organic pollutants from water to soil and sediment organic matters, Environmental science & technology. Vol. 29(1995), pp.1401-1406.
DOI: 10.1021/es00005a037
Google Scholar
[5]
W. Huang and W.J. Weber: A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains, Environmental science & technology. Vol. 31(1997).
DOI: 10.1021/es960995e
Google Scholar
[6]
E.J. LeBoeuf and W.J. Weber: Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior, Environmental science & technology. Vol. 34(2000), pp.3632-3640.
DOI: 10.1021/es991104g
Google Scholar
[7]
B. Xing and J.J. Pignatello: Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter, Environmental science & technology. Vol. 31(1997), pp.792-799.
DOI: 10.1021/es960481f
Google Scholar
[8]
B. Xing and Z. Chen: Spectroscopic evidence for condensed domains in soil organic matter, Soil Science. Vol. 164(1999), pp.40-47.
DOI: 10.1097/00010694-199901000-00006
Google Scholar
[9]
D. Zhao, J.J. Pignatello, J.C. White, W. Braida and F. Ferrandino: Dual‐mode modeling of competitive and concentration‐dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils, Water Resources Research. Vol. 37(2001).
DOI: 10.1029/2001wr000287
Google Scholar
[10]
P. Maurice and K. Namjesnik-Dejanovic: Aggregate structures of sorbed humic substances observed in aqueous solution, Environmental science & technology. Vol. 33(1999), pp.1538-1541.
DOI: 10.1021/es981113+
Google Scholar
[11]
B. Ransom, R. Bennett, R. Baerwald and K. Shea: TEM study of in situ organic matter on continental margins: occurrence and the monolayer, hypothesis, Marine Geology. Vol. 138(1997), pp.1-9.
DOI: 10.1016/s0025-3227(97)00012-1
Google Scholar
[12]
L.M. Mayer and B. Xing: Organic matter–surface area relationships in acid soils, Soil Science Society of America Journal. Vol. 65(2001), pp.250-258.
DOI: 10.2136/sssaj2001.651250x
Google Scholar
[13]
K. Wang and B. Xing: Structural and sorption characteristics of adsorbed humic acid on clay minerals, Journal of Environmental Quality. Vol. 34(2005), pp.342-349.
DOI: 10.2134/jeq2005.0342
Google Scholar
[14]
D.M. McKnight, K.E. Bencala, G.W. Zellweger, G.R. Aiken, G.L. Feder and K.A. Thorn: Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado, Environmental science & technology. Vol. 26(1992).
DOI: 10.1021/es00031a017
Google Scholar
[15]
B. Gu, J. Schmitt, Z. Chen, L. Liang and J.F. McCarthy: Adsorption and desorption of different organic matter fractions on iron oxide, Geochimica et Cosmochimica Acta. Vol. 59(1995), pp.219-229.
DOI: 10.1016/0016-7037(94)00282-q
Google Scholar
[16]
G. U. Balcke, N.A. Kulikova, S. Hesse, F. -D. Kopinke, I.V. Perminova and F.H. Frimmel: Adsorption of humic substances onto kaolin clay related to their structural features, Soil Science Society of America Journal. Vol. 66(2002), pp.1805-1812.
DOI: 10.2136/sssaj2002.1805
Google Scholar
[17]
K. Namjesnik-Dejanovic, P. Maurice, G. Aiken, S. Cabaniss, Y. -P. Chin and M. Pullin: Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3. 7, 6, and 8, Soil Science. Vol. 165(2000), pp.545-559.
DOI: 10.1097/00010694-200007000-00003
Google Scholar
[18]
D. Lin and B. Xing: Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions, Environmental science & technology. Vol. 42(2008), pp.5917-5923.
DOI: 10.1021/es800329c
Google Scholar
[19]
Information on http: /en. wikipedia. org/wiki/Gallic_acid.
Google Scholar
[20]
Information on http: /en. wikipedia. org/wiki/ Fumaric _ acid sodium.
Google Scholar
[21]
The Merck Index, 12th Edition. Entry# 6965.
Google Scholar
[22]
S. Kang and B. Xing: Humic acid fractionation upon sequential adsorption onto goethite, Langmuir. Vol. 24(2008), pp.2525-2531.
DOI: 10.1021/la702914q
Google Scholar
[23]
J. Hur and M.A. Schlautman: Molecular weight fractionation of humic substances by adsorption onto minerals, Journal of colloid and interface science. Vol. 264(2003), pp.313-321.
DOI: 10.1016/s0021-9797(03)00444-2
Google Scholar