Plant Genetic Resources Management for Sustainable Development

Article Preview

Abstract:

The appearance of agriculture roughly 10,000 years ago disrupted the ecological balance of numerous systems. Fortunately, the process of domesticating plants and animals and the spread of agriculture were slow enough to allow a new equilibrium to emerge. Plant genetic resources include primitive forms of cultivated plant species and landraces, modern cultivars, obsolete cultivars, breeding lines and genetic stocks, weedy types and related wild species, which provide the building blocks that allow classical plant breeders and biotechnologists to develop new commercial varieties and other biological products. Therefore, it is obviously very important to manage plant genetic resources for sustainable development in all of country. This article describes the management of plant genetic resources from conservation to utilization, introduces the status of international cooperation for sustainable development and perspectives that the significant plant genetic resources management for sustainable development in the future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

2528-2531

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. lichtfouse, M. Navarrete. P. Debaeke. Agron. Sustain. Dev. 29: 1–6. (2009).

Google Scholar

[2] K. Hammer. Gen. Res. Crop Evol.; 50: 3–10. (2003).

Google Scholar

[3] IPGRI. Rome, Italy: International Plant Genetic Resources Institute. (1993).

Google Scholar

[4] D.R. Marshall, A.H.D. Brown. Cambridge, UK: Cambridge University Press. Pages: 53–80. (1975).

Google Scholar

[5] T. T. Chang. Cambridge Univ. Press, Cambridge. (1989).

Google Scholar

[6] H. Shands. J. Hered. 81, 7–10. (1990).

Google Scholar

[7] T. Kate, K., Laird, S. Earthscan, London. (1999).

Google Scholar

[8] FAO. Information on http: /www. fao. org/ (1997).

Google Scholar

[9] C. Fowler, T. Hodgkin. Annu. Rev. Environ. Resour. 29, 143–179. (2004).

Google Scholar

[10] J. R. McFerson, W. F. Lamboy, S. Kresovich. Crop Sci. 36, 831–838. (1996).

DOI: 10.2135/cropsci1996.0011183x003600040001x

Google Scholar

[11] C. Gómez-Campo. Univ. Politécnica de Madrid 163, 1–10. (2002).

Google Scholar

[12] J. H. W. Holden. Allen & Unwin, London. (1984).

Google Scholar

[13] J. C. Miller, S. D. Tanksley. Theor. App. Genet. 80, 437–448. (1990).

Google Scholar

[14] S. Padulosi, T. Hodgkin, J. T. Williams, CABI, Wallingford, UK. (2002).

Google Scholar

[15] B. Lund, R. Ortiz,I. M. Skovgaard, R. Waugh, S. B. Anderson. Theor. Appl. Genet. 106, 1129–1138. (2003).

Google Scholar

[16] T. J. L. Van Hintum, D. L. Visser. Genet. Resour. Crop Evol. 42, 135–145. (1995).

Google Scholar

[17] E. Lichtfouse. Analusis Magazine 25. M16–M72. (1997).

Google Scholar

[18] E. Lichtfouse, H. Budzinski, P. Garrigues, T. I. Eglinton. Org. Geochem. 26, 353–359. (1997).

Google Scholar

[19] E. Lichtfouse, J. Schwarzbauer, D. Robert. Springer, 780 p. (2005).

Google Scholar

[20] H. Frankel, E. Bennet. Blackwell Scientific, Oxford. (1970).

Google Scholar

[21] H. Frankel, J. G. Hawkes, Cambridge Univ. Press. (1975).

Google Scholar

[22] J. H. W. Holden, J. T. Williams. Allen & Unwin, London. (1984).

Google Scholar

[23] J. R. Kloppenburg, Jr (ed. ). DukeUniv. Press, Durham, North Carolina. (1988).

Google Scholar

[24] X. F. Palacios, Background Study Paper No. 7 Rev. 1 [online]. (1998).

Google Scholar

[25] D. Gollin. CABI, Wallingford, UK. (1998).

Google Scholar

[26] H. Frankel. Blackwell, London. (1970).

Google Scholar

[27] J. T.C. Palmberg. Esquinas-Alcázar. For. Ecol. Manage. 35, 171–197. (1990).

Google Scholar

[28] José E.A. Nature Reviews Genetics, Vol. 6, No. 12. pp.946-953. (2005).

Google Scholar