Decolourization of Kiscolon Scarlet 2KN by Persulfate

Article Preview

Abstract:

The decolourization of dye wastewater by persulfate was studied using kiscolon scarlet2KN as a model dye wastewater. Effects of several parameters, such as dose of oxidant, pH, temperature and UV irradiation, were investigated in detail. The results showed that the decolourization reaction of kiscolon scarlet2KN by persulfate could be fitted to a pseudo-first order kinetics model. In addition, when the oxidant amount used is 70 times of kiscolon scarlet2KN, pH 5.71 and reaction temperature for 70°C, kiscolon scarlet2KN decolorization rate can reach more than 98%. The results are useful for the treatment of dye wastewater. Keywords: Kiscolon scarlet 2KN, Decolourization, Persulfate

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

256-260

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Okit s u K, Lw asaki K, Yobiko Y, et al. Ul trasoni cs Sonoch emis try, 2005, 4: 255- 262.

Google Scholar

[2] Ge J, Qu J. Applied Catalys is B: Environment al, 2004, 47( 2) : 133-140.

Google Scholar

[3] Renata Zyl la, JADWIGA Sojka-L edakow icz, EWA St elmach, etal. Desalinat ion, 2006, 198( 1/ 3) : 316 -325.

Google Scholar

[4] Barredo-Damas S, Iborra- Clarmi, BES - PIA A, et al. Desal inat ion, 2005, 182: 267- 274.

Google Scholar

[5] QIN J ian-jun, OO Mau ng H tun, KEKRE K A. Separati onand Purifi cat ion T ech nology, 2007, 2( 56) : 199- 203.

Google Scholar

[6] Abraham T E, Senan R C, Shaffiqu T S, et al. Biotechnol Prog, 2003, 19: 1372~ 1376.

Google Scholar

[7] Kim T H, Park C, Shin E B, et al. World J Microbiol Biotechnol, 2007, 23: 417~ 422.

Google Scholar

[8] Can O T, Bayramoglu M, Kobya M. Ind Eng Chem Res, 2003, 42: 3391~ 3396.

Google Scholar

[9] K.C. Huang, R.A. Couttenye, G.E. Hoag, Chemosphere 49 (2002) 413–420.

Google Scholar

[10] G.P. Anipsitakis, D.D. Dionysiou, Appl. Catal. B: Environ. 54 (2004)155–163.

Google Scholar

[11] K.C. Huang, Z.O. Zhao, G.E. Hoag, A. Dahmani, P.A. Block, Chemosphere 61 (2005) 551–560.

Google Scholar

[12] T.K. Lau,W. Chu, N.J.D. Graham, Environ. Sci. Technol. 41 (2007) 613–619.

Google Scholar

[13] J.S. Cao, W.X. Zhang, D.G. Brown, D. Sethi, Environ. Eng. Sci. 25 (2008) 221–228.

Google Scholar

[14] S.X. Li, D. Wei, N.K. Mak, Z.W. Cai, X.R. Xu, H.B. Li, Y. Jiang, Journal of Hazardous Materials . 164 (2009) 26–31.

Google Scholar

[15] K.C. Huang, R.A. Couttenye, G.E. Hoag, Chemosphere 49 (2002) 413–420.

Google Scholar

[16] X.R. Xu, H.B. Li, W.H. Wang, J.D. Gu, Chemosphere 57 (2004) 595–600.

Google Scholar

[17] X.R. Xu, H.B. Li,W.H. Wang, J.D. Gu, Chemosphere 59 (2005) 893–898.

Google Scholar