Analyzed the Toxicity of Ganaxolide on Phanerochaete chrysosporium by AFLP

Article Preview

Abstract:

Galaxolide (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-γ-2- benzopyran, HHCB) is recognized as a novel contaminant in water and has potential adverse impacts on aquatic organisms. The toxic effect of HHCB on Phanerochaete chrysosporium was investigated by exposure of the fungus in nitrogen-limited culture medium to various concentrations of HHCB. DNA damage of P. chrysosporium by HHCB was detected. Comparing with that in the control, the percent polymorphism under different concentrations of HHCB increased, from 21.4% to 42.9%. In addition, the result of UPGMA (un-weighted pair group method of arithmetic means) dendrogram showed that the Simple Matching Coefficient (SM) was decreased with an increase in the concentrations of HHCB. Thus, as an environmental pollutant, HHCB has the toxic effect on P. chrysosporium at molecular level.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

266-270

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tanabe: Mar. Pollut. Bull. Vol. 50 (2005), p.1025.

Google Scholar

[2] G.G. Rimkus: Toxicol. Lett. Vol. 111 (1999), p.37.

Google Scholar

[3] X.Y. Zeng, G.Y. Sheng, Y. Xiong, J.M. Fu: Chemosphere, Vol. 60 (2005), p. 8l7.

Google Scholar

[4] H. Fromme, T. Otto, K. Pilz: Water Res. Vol. 35 (2001), p.121.

Google Scholar

[5] A.M. DiFrancesco, P.C. Chiu, L.J. Standley, H.E. Allen, D.T. Salvito: Environ. Sci. Technol. Vol. 38 (2000), p.194.

Google Scholar

[6] M.S. Christian, R.M. Parker, A.M. Hoberman, R.M. Diener, A.M. Api: Toxicol. Lett. Vol. 111 (1999), p.169.

Google Scholar

[7] A.M. Api, R.A. Ford: Toxicol. Lett. Vol. 111(1999), p.143.

Google Scholar

[8] G. Carlsson, L. Norrgren: Arch. Environ. Contam. Toxicol. Vol. 46 (2004), p.102.

Google Scholar

[9] L. Wollenberger, M. Breitholtz, K.O. Kusk, B.E. Bengtsson: Sci. Total Environ. Vol. 305 (2003), p.53.

Google Scholar

[10] M.P. Gooding, T.J. Newton, M.R. Bartsch, K.C. Hornbuckle: Arch. Environ. Contam. Toxicol. Vol. 51 (2006), p.549.

Google Scholar

[11] K.L. Sublette, E.V. Ganapathy, S. Schwartz: App1. Biochem. Biotechnol. Vol. 1 (1992), p.709.

Google Scholar

[12] P. Vos, L. Hogers, M. Bleeker, M. Reijans, T. van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, M. Zabeau: Nucleic. Acids. Res. Vol. 23 (1995), p.4407.

DOI: 10.1093/nar/23.21.4407

Google Scholar

[13] H.M. Meudt, A.C. Clarke: Trends Plant Sci. Vol. 12(2007), p.106.

Google Scholar

[14] M. Labra, F. De Mattia, M. Bernasconi, D. Bertacchi, F. Grassi, I. Bruni, S. Citterio: Water Air Soil Pollut. Vol. 213 (2010), p.57.

DOI: 10.1007/s11270-010-0367-3

Google Scholar

[15] M. Labra, T. Di Fabio, F. Grassi, S.M.G. Regondi, M. Bracale, C. Vannini, E. Agradi: Chemosphere Vol. 52 (2003), p.1183.

DOI: 10.1016/s0045-6535(03)00367-9

Google Scholar

[16] H.X. Xiong and Q.X. Zhou: Environ Sci Pollut Res Int, Vol. 19(2012), p.2172.

Google Scholar

[17] C. Chen, Q.X. Zhou, S. Liu, Z.M. Xiu: Chemosphere Vol. 83 (2011), p.1147.

Google Scholar

[18] S.A. Walles: Toxicol. Lett. Vol. 31 (1986), p.31.

Google Scholar

[19] M. Toraason, J. Clark, D. Dankovic, P. Mathias, S. Skaggs, C. Walker, D. Werren: Toxicology Vol. 138 (1999), p.43.

Google Scholar

[20] S.S. Wise, A.L. Holmes, J.P. Wise: Rev. Environ. Health Vol. 23 (2008), p.39.

Google Scholar