[1]
Cairns, T., E.G. Siegmund, and H.T. Masumoto. 1983. Occurrence of pentachloronitrobenzene and its metabolites in spinach leaves. Bull. Environ. Contal. Toxicol. 2, 230-234.
DOI: 10.1007/bf01607898
Google Scholar
[2]
Schauerte, W., J.P. Lay, W. Klein, and F. Korte. 1982. Long-term fate of organochlorine xenobiotics in aquatic ecosystems: distribution, residual behavior, and metabolism of hexachlorobenzene, pentachloronitrobenzene, and.
DOI: 10.1016/0147-6513(82)90037-9
Google Scholar
[3]
4-chloroaniline in small experimental ponds. Ecotoxicol. Environ. Saf. 6: 560-569.
Google Scholar
[4]
Fushiwaki, Y., N. Tase, A. Saeki, K. Urano. 1990. Pollution by the fungicide pentachloronitrobenzene in an intensive farming area in Japan. Sci. Total. Environ. 92: 55-67.
DOI: 10.1016/0048-9697(90)90321-k
Google Scholar
[5]
Ko, W.H. and J.D. Farley. 1969. Conversion of pentachloronitrobenzene to pentachloroaniline in soil and the effect of these compounds on soil microorganisms. Phytopathology. 59: 64-67.
Google Scholar
[6]
Murthy, N.B.K. and D.D. Kaufman. 1978. Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils. J. Agric. Food Chem. 26: 1151-1156.
DOI: 10.1021/jf60219a016
Google Scholar
[7]
Kamal, M., I. Scheunert, and F. Körte. 1983. Mass balance of 14Cpentachloronitrobenzene and metabolites in a closed, aerated soil-plant or soil-system. Bull. Environ. Contal. Toxicol. 31: 559-565.
DOI: 10.1007/bf01605475
Google Scholar
[8]
Françoise, Seigle-Murandia and Régine Steimana. 1992. Relationship between the biodegradative capability of soil micromycetes for pentachlorophenol and for pentachloronitrobenzene Sci. Tot. Environ. 123–124: 291–298.
DOI: 10.1016/0048-9697(92)90154-k
Google Scholar
[9]
Didier Liévremonta, Françoise Seigle-Murandiaa and Jean-Louis. 1996. Effects of culture parameters on pentachloronitrobenzene removal by Sporothrix cyanescens. Chemosphere. 32, (2): 361–375.
DOI: 10.1016/0045-6535(95)00347-9
Google Scholar
[10]
Didier Liévremonta, Françoise Seigle-Murandiaa and Jean-Louis. 1996. Biotransformation and biosorption of pentachloronitrobenzene by fungal mycelia Mycological Research. Mycolo Res. 100, (8): 361–375.
DOI: 10.1016/s0953-7562(96)80047-5
Google Scholar
[11]
ChemWorx , Didem Okutman Tas and Spyros G, 2005, Microbial Reductive Transformation of Pentachloronitrobenzene under Methanogenic Conditions. Environ. Sci. Technol, 39 (21): 8264–8272.
DOI: 10.1021/es050407+
Google Scholar
[12]
Didem, Okutman Tas, Spyros G and Pavlostathis, 2007, The influence of iron reduction on the reductive biotransformation of pentachloronitrobenzene. Euro J Soil Bio 43(5–6): 264–275.
DOI: 10.1016/j.ejsobi.2007.03.003
Google Scholar
[13]
Didem Okutman Tas and Spyros G. Pavlostathis Effect of Nitrate Reduction on the Microbial Reductive Transformation of Pentachloronitrobenzene Environ. Sci. Technol, 2008, 42 (9): 3234–3240.
DOI: 10.1021/es702261w
Google Scholar
[14]
Takagi K, Iwasaki A and Kamei I, 2009, Aerobic Mineralization of Hexachlorobenzene by Newly Isolated Pentachloronitrobenzene - Degrading Nocardioides sp. Strain PD653 appl environ microbio, 75 (13): 4452-4456.
DOI: 10.1128/aem.02329-08
Google Scholar
[15]
Theodore P. Klupinski Yu-Ping and Chin Samuel J, 2004 Abiotic Degradation of Pentachloronitrobenzene by Fe(II): Reactions on Goethite and Iron Oxide Nanoparticles Environ. Sci. Technol., 38 (16) 4353–4360.
DOI: 10.1021/es035434j
Google Scholar
[16]
Hakala JA, Chin YP and Weber EJ, 2007, Influence of Dissolved Organic Matter and Fe(II) on the Abiotic Reduction of Pentachloronitrobenzene, Environ Sci Technol. Nov 1; 41(21): 7337-7342.
DOI: 10.1021/es070648c
Google Scholar