Optical Property Studies of CdO Nanoparticles Synthesized by Solid-State Reaction

Article Preview

Abstract:

CdO nanoparticles with different sizes were synthesized by a simple thermal decomposition reaction of the precursor CdCO3, which was synthesized by room-temperature grinding reaction between Cd(CH3COO)2•2H2O and Na2CO3. Composition, structure and morphology of the products were analyzed and characterized by XRD, TG and FTIR spectra. Formation of CdO nanoparticles was thought that nucleation rate of the reactive system was far excess growth rate of particle. Optical properties of the products were recorded, and the UV-vis spectra exhibited the distinct blue shift in comparison with them of the bulk CdO, which was because that the quantum confinement effect of the products could be larger than the Coulomb effect. PL spectra of the products showed the emission bands around 520 and 720 nm respectively, which attributed to the quantum size effect and structural defects in the crystals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

625-630

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Trindade, P. O'Brien and N. L. Pickett: Chem. Mater. Vol. 13 (2001), p.3843.

Google Scholar

[2] A. D. Yoffe: Adv. Phys. Vol. 42 (1993), p.173.

Google Scholar

[3] M. Ghosh and C. N. R. Rao: Chem. Phys. Lett. Vol. 393 (2004), p.493.

Google Scholar

[4] M. Ristic, S. Popovic and S. Music: Mater. Lett. Vol. 58 (2004), p.2494.

Google Scholar

[5] W. D. Shi, C. Wang, H. S. Wang and H. Zhang: Cryst. Growth Des. Vol. 6 (2006), p.915.

Google Scholar

[6] H. D. Yu, D. S. Wang and M. Y. Han: J. Am. Chem. Soc. Vol. 129 (2007), p.2333.

Google Scholar

[7] A. S. Lanje, R. S. Ningthoujam, S. J. Sharma, R. B. Pode: Indian J. Pure & Appl. Phy. Vol. 49(2011), p.234.

Google Scholar

[8] S. Reddy, B. E. K. Swamy, U. Chandra, B. S. Sherigara, H. Jayadevappa: Inter. J. Elect. Sci. Vol. 5(2010), p.10.

Google Scholar

[9] M. Ristic, S. Popovic, S. Music: Mater. Lett. Vol. 58(2004), p.2494.

Google Scholar

[10] A. Aakarinejad and A. Morsali: Mater. Lett. Vol. 62 (2008), p.478.

Google Scholar

[11] D. P. Dutta, A. K. Tyagi, G. Sharma: J. Indian Chem. Society Vol. 87(2010), p.23.

Google Scholar

[12] K. Manickathai, S. K. Viswanathan, M. Alagar: Indian J. Pure &Appl. Phy. Vol. 46(2008), p.561.

Google Scholar

[13] N. Singh, S. Charan, K. R. Patil, A. K. Viswanath, P. K. Khanna: Mater. Lett. Vol. 60(2006), p.3492.

Google Scholar

[14] T. Ghoshal, S. Kar, S. K. De: Appl. Sur. Sci. Vol. 255(2009), p.8091.

Google Scholar

[15] T. Ghoshal, S. Kar, S. Chaudhuri: Appl. Sur. Sci. Vol. 253(2007), p.7578.

Google Scholar

[16] H. M. Yang, G. Z. Qiu, X. C. Zhang, A. D. Tang, W. G. Yang: J. Nanopart. Res. Vol. 6(2004), p.539.

Google Scholar

[17] W. T. Dong and C. S. Zhu: Opt. Mater. Vol. 22 (2003), p.227.

Google Scholar

[18] Y. M. Zhou and X. Q. Xin: Chinese J. Inorg. Chem. Vol. 15 (1999), p.273.

Google Scholar

[19] J. S. Jie, G. Z. Wang and X. H. Han: J. Phys. Chem. B. Vol. 108 (2004), p.17027.

Google Scholar

[20] X. Wang and Y. D. Li: J. Am. Chem. Soc. Vol. 124 (2002), p.2880.

Google Scholar

[21] Y. Chen, J. M. Zhu, X. H. Zhu, G. B. Ma, Z. G. Liu and N. B. Min: Mater. Sci. Engineer B Vol. 99 (2003), p.52.

Google Scholar

[22] Y. H. Chi, J. Zhuang, J. Yu and M. J. Tu: Chinese J. Inorg. Chem. Vol. 20 (2004), p.479.

Google Scholar

[23] T. X. Wang, H. Xiao and Y. C. Zhang: Mater. Lett. Vol. 62 (2008), p.3736.

Google Scholar

[24] Z. J. Wang, H. M. Zhang, L. G. Zhang, J. S. Yuan, S. G. Yan and C. Y. Wang: Nanotechnology Vol. 14 (2003), p.11.

Google Scholar

[25] J. S. Liu, J. M. Cao, Z. Q. Li, G. B. Ji, S. G. Deng and M. B. Zheng: J. Mater. Sci. Vol. 42 (2007), p.1054.

Google Scholar

[26] J. S. Liu, J. M. Cao, Z.Q. Li, G. B. Ji and M. B. Zheng: Chinese J. Inorg. Chem. Vol. 23 (2007), p.833.

Google Scholar

[27] J. I. Pankove: Optical processes in semiconductors (Dover Publications Inc. New York, 1970).

Google Scholar

[28] A. J. Skinner and J. P. LaFemina: Phys. Rev. B Vol. 45 (1992), p.3557.

Google Scholar

[29] J. E. Jaffe, R. Pandey and A. B. Kunz: Phys. Rev. B Vol. 43 (1991), p.14030.

Google Scholar

[30] B. S. Zou, R. B. Little, I. P. Wang and M. A. EI Sayed: Int. J. Quantum Chem. Vol. 72 (1999), p.439.

Google Scholar

[31] N. Ueda, H. Maeda, H. Hosono and H. Kawazoe: J. Appl. Phys. Vol. 84 (1998), p.6174.

Google Scholar

[32] X. C. Wu, R. Y. Wang, B. S. Zou, L. Wang, S. M. Liu, J. R. Xu and W. Huang: J. Mater. Res. Vol. 13 (1998), p.604.

Google Scholar