Strengthening of Foam Glass Materials

Article Preview

Abstract:

Experimental data on strengthening of foam glass materials is presented. A new mechanism of strengthening is proposed which involves formation of amorphous matrix nanoglobules. Highlights: nanospheroid occurrence in foam glass; new strengthening mechanism of amorphous materials; correlation between micro-structural changes in the interpore partition of porous materials and mechanical characteristics thereof.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-83

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.L. Bershtein, V.A. Zaimovsky. Mechanical properties of metals. Hand-book, (1979).

Google Scholar

[2] R. Zimmerman, K. Gunter, Metallurgy and Material Science. Hand-book. Transl. from German. M. 1 Metallurgy, (1982).

Google Scholar

[3] Yu. I. Tyurin, A.I. Golovin, Non-dislocation plasticity and its role in mass transfer and dent formation by dynamic indentation. FTT 42 (2000) 1818-1820.

Google Scholar

[4] R.A. Andrievsky, A.M. Glezer, Strength of nanostructures. Uspekhi fizicheskikh nauk 179 (2009) 337-358.

Google Scholar

[5] V.E. Panin, V.P. Sergeyev, A.V. Panin, Yu I. Pochivalov. Nanostructurization of surface layers and application of nanostructure coatings as an effective method for hardening of modern construction and instrumental materials. FMM 104 (2007).

Google Scholar

[6] S.N. Dub, N.V. Novikov, Nanohardness testing of solids. Superhard materials 6 (2004) 16-33.

Google Scholar

[7] E.V. Kozlov, N.A. Koneva, N.A. Popova, Granular structure, geometrically necessary dislocations and secondary phase particles and polycrystals on the macro- and meso- scale levels. Physical Meso-Mechanics 12 (2009) 93-106.

DOI: 10.1016/j.physme.2009.12.010

Google Scholar

[8] O.V. Kazmina, V.I. Vereshshagin, B.S. Semukhin, A.N. Abijaka, Low-temperature synthesis of granular glass from mixes based on silica-alumina containing components for obtaining foam materials. Glass and Ceramic 66 (2009) 314-344.

DOI: 10.1007/s10717-010-9193-8

Google Scholar

[9] O.V. Kazmina, V.I. Vereshshagin, A.N. Abijaka, Expansion of the raw-materials source base for foam-glass-ceramic materials production. Building Materials 7 (2009) 54-56.

Google Scholar

[10] P.D. Sarkisov, Production of multifunctional crystalline glass materials by directional cryslallization of glass. M: Mendeleyev PKhTU, (1997).

Google Scholar

[11] N.P. Lyakishev, Nanocrystalline structures – a novel perspective of construction material development. Vestnik of Russian Academy of Sciences 73 (2003) 422.

Google Scholar

[12] O.V. Kazmina, V.I. Vereshshagin, B.S. Semukhin, Structure and Strength of foam-glass-crystalline materials produced from a glass granulate. Glass Physics and Chemistry 37 (2011) 29-36.

DOI: 10.1134/s1087659611040092

Google Scholar

[13] G.D. Chukin, Surface chemistry and disperse silica structure. M.: Paladin Publishing House, ООО «Printa», (2008).

Google Scholar

[14] E.A. Golubev, Hypomolecular structures of natural-ray amorphous materials. Ekaterinburg: Publishing House of RAS (Urals Branch), (2006).

Google Scholar

[15] E.A. Golubev, Scanning probe microscopy data on the globular structure of higher anthraxolites. Doklady Akademii Nauk 425 (2009) 519–521.

DOI: 10.1134/s1028334x09030179

Google Scholar

[16] Ye. А. Golubev, Scanning Probe Microscopy in Researches of Micro- and Nanostructure in Noncrystalline Geomaterials. Microscopy & Microanalysis 9 (2003) 304-305.

DOI: 10.1017/s1431927603025029

Google Scholar

[17] V.I. Beryozkin, Fullerenes as nuclei of soot particles. FTT 42 (2000) 567-572.

Google Scholar

[18] W.H. Jiang, M. Atzmon, Acta Mater 51 (2003) 4095.

Google Scholar

[19] H. Chen, Y. He, G.J. Shiflet, S.J. Poon Nature 367 (1994) 541.

Google Scholar

[20] W.H. Jiang, M. Atzmon. Scripta Mater 54 (2006) 333.

Google Scholar

[21] W.H. Jiang, F.E. Pinkerton, M. Atzmon. Appl Phys 93 (2003) 9287.

Google Scholar