The Influence of the Peptide Molar Ratios on the Functionalization of Gold Nanoparticles

Article Preview

Abstract:

Au nanoparticles (NPs) functionalized with L-cysteine (Cys) and cysteine-glycine (Cys-Gly) were synthetized. The AuNPs were prepared using sodium citrate as reducing agent. The influence of the molar concentrations of Cys and Cys-Gly, as well as the sodium citrate is studied on particle size and particle size distribution. TEM measurements revealed the formation of AuNPs with diameter in the range 5-35 nm which corresponds to nontoxic sizes [we should add a reference here, perhaps number one]. The optimal particle size for biomedical application along with narrow particle size distribution was observed for samples prepared with molar ratio of CAu:Ccitrate = 1:10. The results of UV-Vis spectroscopy revealed the interaction of the AuNPs with Cys and Gly-Cys demonstrated by a visible change in the absorption intensities of the plasmon peak located at 520 nm after AuNP functionalization and a slight shifting of this gold nanoparticles plasmon peak. Thus, any dielectric shell on surface of particles with more refraction index (and, correspondingly, dielectric function) can produce the particles with the red shift. Such effect of the surface shell with red-shift in the range of few nanometers observed for the AuNPs functionalized with Cys and Cys-Gly (Fig. 4) can be interpreted as thin or discontinuous layer of aminoacid molecules according to the data of optical spectra simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-105

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Krol et al., Nano Lett., 6 (9) (2006) 1933–(1939).

Google Scholar

[2] T.H.L. Nghiem1, T.H. La, X.H. Vu, et. al, Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 025009 (2010) 5.

Google Scholar

[3] V.A. Sinani, D. S. Koktysh,B. -G. Yun, R.L. Matts, T.C. Pappas, M. Motamedi, S.N. Thomas, N.A. Kotov, Nano Lett. 3 (9) (2003) 1177-1182.

DOI: 10.1021/nl0255045

Google Scholar

[4] Y. Zhang, N. Kohler, M. Zhang, Biomaterials 23 (2002) 1553–1561.

Google Scholar

[5] B. Kang, M. A. Mackey, M. A. El-Sayed, J. Am. Chem. Soc., 132 (2010), 1517–1519.

Google Scholar

[6] P.C. Chen, S.C. Mwakwari, A.K. Oyelere, Nanotechnology, Science and Applications, 1 (2008) 45-66.

Google Scholar

[7] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Small, 1 (2005) 325–327.

Google Scholar

[8] I. Willner, E. Katz, B. Willner, R. Blonder, V. Heleg-Shabtai and A.F. Bückmann, Biosens. Bioelectron., 12 (1997) 337–356.

DOI: 10.1016/s0956-5663(96)00065-6

Google Scholar

[9] P. Tengvall, M. Lestelius, B. Liedberg and I. Lundstroem, Langmuir, 8 (1992) 1236–1238.

DOI: 10.1021/la00041a001

Google Scholar

[10] H. -A. Weng, C. -C. Wu, C. -C. Chen, C. -C. Ho, S. -J. Ding, Journal of Materials Science: Materials in Medicine, 21 (5) (2010) 1511-1519.

Google Scholar

[11] C. M. Goodman, C. D. McCusker, T. Yilmaz, V. M. Rotello, Bioconjugate Chem., 15 (2004) 897–900.

Google Scholar

[12] A. Mocanu, I. Cernica, G. Tomoaia, L. -D. Bobos, O. Horovitz, M. Tomoaia-Cotisel, Colloids and Surfaces A: Physicochem. Eng. Aspects, 338 (2009) 93–101.

DOI: 10.1016/j.colsurfa.2008.12.041

Google Scholar

[13] G. Sonavane, K. Tomoda, K. Makino, Colloids Surf. B, 66 (2008) 274–280.

Google Scholar

[14] B.J. Spencer, I. M. Verma, Proc. Natl. Acad. Sci. USA, 104 (18) (2007) 7594–7599.

Google Scholar

[15] J. Turkevich; P. C. Stevenson, J. Hillier; Discuss. Faraday Soc., 11 (1951) 55.

Google Scholar

[16] T.B. Huff, M.N. Hansen, Y. Zhao, J.X. Cheng, A. Wei, Langmuir, 23 (2007) 1596–1599.

Google Scholar

[17] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, J. Controlled Release, 114 (2006) 343–347.

DOI: 10.1016/j.jconrel.2006.06.017

Google Scholar

[18] K.B. Male, J. Li, C.C. Bun, S. -C. Ng, J.H.T. Luong, J. Phys. Chem. C, 112 (2) (2008) 443–451.

Google Scholar

[19] H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Langmuir, 22 (2006), 2–5.

DOI: 10.1021/la0520029

Google Scholar

[20] G. Sonavanea, K. Tomodaa, K. Makino, Colloids and Surfaces B: Biointerfaces 66 (2008) 274–280.

Google Scholar

[21] S. Link and M. A. El-Sayed , Phys. Chem. B, 103 (1999) 4212-4217.

Google Scholar

[22] R. Le´vy, N. T. K. Thanh, R. C. Doty, I. Hussain, R. J. Nichols, D. J. Schiffrin, M. Brust, and D. G. Fernig J. AM. CHEM. SOC., 126 (2004) 10076-10084.

DOI: 10.1021/ja0487269

Google Scholar

[23] A. Majzik, R. Patakfalvi, V. Hornok and I. Dekany, Gold Bulletin Volume 42 No 2 (2009).

Google Scholar

[24] T.H.L. Nghiem, T.H. La, X. H. Vu, V.H. Chu, T.H. Nguyen, et. al Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 (2010) 025009.

Google Scholar

[25] Yu. Petrov, Clusters and small particles, Moscow, Nauka (1982) 298.

Google Scholar

[26] G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908). U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters. Berlin: Springer-Verlag (1995).

Google Scholar

[27] V. Petranovskii, V. Gurin, N. Bogdanchikova, A. Licea-Claverie, Y. Sugi, E. Stoyanov, Mater. Sci. Eng. A332 (2002) 180.

Google Scholar

[28] D.L. Feldheim, C.A. Foss, Jr, Metal Nanoparticles: Synthesis, Characterization and Applications, Marcel Dekker, New York (2002) 141.

Google Scholar

[29] Yu. Ekmanis, Yu. Rud, I. Radchenko, J. Phys. Techn. Sci., 5 (1997) 3.

Google Scholar

[30] P.B. Johnson, R.W. Christy, Phys. Rev. B, 6 (1972) 4370.

Google Scholar

[31] Y.Q. He, L. Kong, Z.F. Liu, Spectrochemica Acta Part A, , 61, (2005) 2861.

Google Scholar

[32] L. Marsich, A. Bonifacio, S. Mandal, S. Krol, C. Beleites, and V. Sergo Langmuir 2012, 28, 13166.

DOI: 10.1021/la302383r

Google Scholar