Influences of Fe Doping on the Electronic Structure of Mg(0001) Surface and Hydrogenation Mechanism in Fe-Doped Mg(0001) Surface

Article Preview

Abstract:

First-principles calculations within the density functional theory (DFT) have been carried out to study the interaction of hydrogen molecule with Fe-doped Mg (0001) surfaces. First we have calculated the stability of the Fe atom on the Mg surface, On the basis of the energetic criteria, Fe atom prefer to substitute one of the Mg atoms from the second layer. In the second step, we have studied the interaction between hydrogen molecule and the Fe-doped Mg (0001) surface. The results show that for Fe atoms doped Mg (0001) surface in the second layer, enhances the chemisorption interaction between H2 molecule and Fe atom, but also benefits H atom diffusion into Mg bulk with relatively more diffusion paths compared with that of clean Mg surface. Charge density difference plots provided some ideas about why certain alloying elements on the surface reduce the energy barrier of H2 molecule dissociation on Fe-doped Mg (0001) surface. We can see that Fe as catalyst for the hydrogenation/dehydrogenation of Mg alloy samples and provide more dissociation path for H2 molecule and diffusion paths for H atom, The present results not only beneficial for clarify the experimentally observed fast hydrogenation kinetics for Fe-capped Mg materials but also help to design new types of hydrogen storage materials for practical applications in the auto industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-120

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Schlapbach and A. Züttel: Nature, Vol. 414 (2001), p.353.

Google Scholar

[2] R. B. Schwarz: MRS Bull, Vol. 24 (1999) No. 2, p.40.

Google Scholar

[3] I.P. Jain, C. Lal, and A. Jain: Int. J. Hydrogen Energy, Vol. 35 (2010) No. 10, p.5133.

Google Scholar

[4] J.L. Bobet, C. Even, Y. Nakamura, E. Akiba, and B. Darriet: J. Alloys Compd, Vol. 298 (2000) No. 1, p.279.

Google Scholar

[5] G. Liang: J. Alloys Compd, Vol. 370 (2004) No. 1, p.123.

Google Scholar

[6] Y. Song, Z.X. Guo, and R. Yang: Phys. Rev. B, Vol. 69 (2004) No. 6, p.094205.

Google Scholar

[7] T. Vegge, L. S. Hedegaard–Jensen, J. Bonde, T. R. Munter, and J. K. Nørskov: J. Alloys Compd, Vol. 386 (2005) No. 1, p.1.

Google Scholar

[8] R. Baer, Y. Zeiri and R. Kosloff: Phys. Rev. B, Vol. 55 (1997) No. 16, p.10952.

Google Scholar

[9] G. Liang, J. Huot, S. Boily, A. Van Neste and R. Schulz: J Alloys Compd, Vol. 292 (1999) No. 1, p.247.

Google Scholar

[10] Schulz R, Liang G, Huot: J. Hydrogen sorption in mechanically alloyed nanocrystalline and disordered materials. In: Dinesen, editor. Proceedings of the 22nd Risø international symposium on material science: Science of metastable and nanocrystalline alloys: Structure, properties and modeling, Vol. 3-7 (2001).

Google Scholar

[11] A. J. Du, S. C. Smith, X. D. Yao, and G. Q. Lu: J. Phys. Chem. B, Vol. 109 (2005) No. 38, p.18037.

Google Scholar

[12] A. J. Du, S. C. Smith, X. D. Yao, and G. Q. Lu: J. Am Chem. Soc, Vol. 129 (2007) No. 33, p.10201.

Google Scholar

[13] R. Baer, Y. Zeiri, R. Kosloff: Phys. Rev. B, Vol. 55 (1997) No. 16, p.10952.

Google Scholar

[14] M. Pozzo, D. Alfe `, A. Amieiro, S. French and Pratt A: J. Chem Phys, Vol. 128 (2008) No. 9, p.094703.

Google Scholar

[15] M. Pozzo and D. Alfe `: Int. J. Hydrogen Energy, Vol. 34 (2009) No. 1, p. (1922).

Google Scholar

[16] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopaulos: Rev. Mod. Phys, Vol. 64 (1992) No. 4, p.1045.

Google Scholar

[17] G. Kresse and J. Furthmuller: Phys. Rev. B, Vol. 54 (1996) No. 16, p.11169.

Google Scholar

[18] J.P. Perdew and Y. Wang: Phys. Rev. B, Vol. 45 (1992) No. 23, p.13244.

Google Scholar

[19] G. Kresse and D. Joubert: Phys. Rev. B, Vol. 59 (1999) No. 3, p.1758.

Google Scholar

[20] J. Neugebauer and M. Scheffler: Phys. Rev. B Vol. 46 (1992) No 24, p.16067.

Google Scholar

[21] G. Henkelmen and H. Jonsson: J. Chem. Phys, Vol. 113 (2000) No. 21, p.9978.

Google Scholar