Thermal Decomposition Process of FeC2O4. 2H2O in the Air

Article Preview

Abstract:

α-Fe2O3 nanoparticles are prepared at 550 °C by the thermal decomposition of FeC2O4·2H2O in the air. The morphologies of the pyrolysates of FeC2O4·2H2O in the air were investigated by scanning electron microscope (SEM). The results showed that in the process of the thermal decomposition of FeC2O4·2H2O, the influence on the pattern of the decomposition was more from 249.9 °C to 550 °C. The influence on the pattern of the decomposition was less from 218.4 °C to 249.9 °C. Therefore, the thermal condition of FeC2O4·2H2O in the air was controlled if the effective pattern of α-Fe2O3 powder was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-138

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hermanek, R. Zboril, M. Mashlan, L. Machala and O. Schneeweiss: J. Mater. Chem., Vol. 16 (2006), p.1273.

DOI: 10.1039/b514565a

Google Scholar

[2] V. Carles, P. Alphonse, P. Tailhades and A. Rousset: Thermochim. Acta, Vol. 334 (1999), p.107.

Google Scholar

[3] M. Popa, J. M. Calderon-Moreno, D. Crisan and M. Zaharescu: J. Therm. Anal. Calorim., Vol. 62 (2000), p.633.

Google Scholar

[4] N. N. Mallikarjuna, B. Govindaraj, A. Lagashetty and A. Venkataraman: J. Therm. Anal. Calorim., Vol. 71 (2003), p.915.

Google Scholar

[5] R. Zboril, L. Machala, M. Mashlan, M. Hermanek, M. Miglierini and A. Fojtik: Phys. Status Solidi C, Vol. 1 (2004), p.3583.

DOI: 10.1002/pssc.200405511

Google Scholar

[6] R. Zboril, M. Mashlan and D. Petridis: Chem. Mater., Vol. 14 (2002), p.969.

Google Scholar

[7] A. B. Bourlinos, R. Zboril and D. Petridis: Microporous Mesoporous Mater., Vol. 58 (2003), p.155.

Google Scholar

[8] R. Zboril, L. Machala, M. Mashlan and V. Sharma: Cryst. Growth Des., Vol. 4 (2004), p.1317.

Google Scholar

[9] R. R. Glenn and P. K. Gallagher: Thermochim. Acta, Vol. 272 (1996), p.11.

Google Scholar

[10] M. A. Mohamed, A. K. Galwey and S. A. Halawy: Thermochim. Acta, Vol. 429 (2005), p.57.

Google Scholar

[11] R. L. Frost and M. L. Weier: J. Therm. Anal. Calorim., Vol. 75 (2004), p.277.

Google Scholar

[12] M. Hermanek, R. Zboril, I. Medrik, J. Pechousek and C. Gregor: J. Am. Chem. Soc., Vol. 129 (2007), p.10929.

DOI: 10.1021/ja072918x

Google Scholar

[13] W. Zhou, K. Tang, S. Zeng and Y. Qi: Nanotechnology, Vol. 19 (2008), p.065602.

Google Scholar

[14] V. Rao, A. L. Shashimohan and A. B. Biswas: J. Mater. Sci., Vol. 9 (1974), p.430.

Google Scholar