Influence of Atomic Defect on the Deformation Properties of Nanowires Subjected to Uniaxial Tension

Article Preview

Abstract:

Atomic defects play an important role in the brittle deformation of nanowires at low temperatures. With molecular dynamics simulations, we study the influence of vacancy defects on the deformation and breaking behaviors of [10 oriented single-crystal gold nanowires at 50 and 150 K. The size of the nanowire is 10a × 10a × 30a (a stands for lattice constant, 0.408 nm for gold). It is shown that good crystalline structure appears in the whole deformation process, and it is in a brittle way at low temperature. The nanowire breaking behavior is sensitive to atomic vacancies when the atomic vacancy ratio is 1% in single-layer crystalline plane. Within the limitation of vacancy-induced breaking of the nanowire, the mechanical strengths increase under atomic vacancies. However, it decreases with the defect ratio increasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-146

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Deng and F. Sansoz: Acs Nano Vol. 3 (2009) 3001-3008.

Google Scholar

[2] E. Z. da Silva, A. J. R. da Silva and A. Fazzio: Phys. Rev. Lett. Vol. 87 (2001), p.256102.

Google Scholar

[3] F. Y. Wang, Y. J. Gao, T. M. Zhu and J. W. Zhao: Nanoscale Vol. 3 (2011), pp.1624-1631.

Google Scholar

[4] F. Y. Wang, T. N. Chen, T. M. Zhu, Y. J. Gao and J. W. Zhao: J. Appl. Phys. Vol. 110 (2011), p.084307.

Google Scholar

[5] F. Y. Wang, W. Sun, H. Wang, J. W. Zhao, M. Kiguchi and C. Q. Sun: J. Nanopart. Res. Vol. 14 (2012), p.1082.

Google Scholar

[6] M. P. AllenD. J. Tildesley, Computer Simulation of Liquids. (Clarendon, New York, 1997).

Google Scholar

[7] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Second ed. (Cambridge Univerty Press, 2004).

Google Scholar

[8] M. Lucas, A. M. Leach, M. T. McDowell, S. E. Hunyadi, K. Gall, C. J. Murphy and E. Riedo: Phys. Rev. B Vol. 77 (2008), p.225420.

Google Scholar

[9] L. Pastor-Abia, M. J. Caturla, E. SanFabian, G. Chiappe and E. Louis: Phys. Rev. B Vol. 83 (2011), p.165441.

Google Scholar

[10] A. Husain, J. Hone, H. W. C. Postma, X. M. H. Huang, T. Drake, M. Barbic, A. Scherer and M. L. Roukes: Appl. Phys. Lett. Vol. 83 (2003), pp.1240-1242.

DOI: 10.1063/1.1601311

Google Scholar

[11] C. M. Lieber: MRS Bull. Vol. 28 (2003), pp.486-491.

Google Scholar

[12] J. J. Kruzic: Science Vol. 325 (2009), pp.156-158.

Google Scholar

[13] D. X. Wang, J. W. Zhao, S. Hu, X. Yin, S. Liang, Y. H. Liu and S. Y. Deng: Nano Lett. Vol. 7 (2007), pp.1208-1212.

Google Scholar

[14] F. Y. Wang, Y. J. Gao, T. M. Zhu and J. W. Zhao: Nanoscale Res. Lett. Vol. 6 (2011), p.291.

Google Scholar

[15] G. M. Finbow, R. M. LyndenBell and I. R. McDonald: Mol. Phys. Vol. 92 (1997), pp.705-714.

Google Scholar

[16] S. Nośe: Mol. Phys. Vol. 52 (1984), pp.255-268.

Google Scholar

[17] S. Nośe: J. Chem. Phys. Vol. 81 (1984), pp.511-519.

Google Scholar

[18] W. G. Hoover: Phys. Rev. A Vol. 31 (1985), pp.1695-1697.

Google Scholar

[19] M. J. Mehl and D. A. Papaconstantopoulos: Phys. Rev. B Vol. 54 (1996), pp.4519-4530.

Google Scholar

[20] J. Hutter and A. Curioni: Chemphyschem Vol. 6 (2005), pp.1788-1793.

Google Scholar

[21] R. A. Johnson: Phys. Rev. B Vol. 39 (1989), pp.12554-12559.

Google Scholar

[22] H. A. Wu: Eur. J. Mech. a-Solids Vol. 25 (2006), pp.370-377.

Google Scholar

[23] J. W. Zhao, X. Yin, S. Liang, Y. H. Liu, D. X. Wang, S. Y. Deng and J. Hou: Chem. Res. Chin. Univ. Vol. 24 (2008), pp.367-370.

Google Scholar

[24] F. Y. Wang, Y. H. Liu, X. Yin, N. Wang, D. X. Wang, Y. J. Gao and J. W. Zhao: J. Appl. Phys. Vol. 108 (2010), p.074311.

Google Scholar

[25] F. Wang, Y. H. Liu, T. Zhu, Y. Gao and J. Zhao: Nanoscale Vol. 2 (2010), pp.2818-2825.

Google Scholar

[26] F. Wang, W. Sun, Y. Gao, Y. Liu, J. Zhao and C. Sun: Comp. Mater. Sci. Vol. 67 (2012 ), pp.182-187.

Google Scholar

[27] J. Zhao, F. Wang, L. Jiang, X. Yin and Y. Liu: Acta Phys. Chim. Sin. Vol. 25 (2009) 1835-1840.

Google Scholar

[28] L. Jiang, X. Yin, J. Zhao, H. Liu, Y. Liu, F. Wang and J. Zhu: J. Phys. Chem. C Vol. 113 (2009), p.20193–20197.

Google Scholar

[29] J. Zhao, K. Murakoshi, X. Yin, M. Kiguchi, Y. Guo, N. Wang, S. Liang and H. Liu: J. Phys. Chem. C Vol. 112 (2008), p.20088–20094.

DOI: 10.1021/jp8055448

Google Scholar

[30] K. L. Ekinci and M. L. Roukes: Rev. Sci. Instrum. Vol. 76 (2005), p.061101.

Google Scholar

[31] K. J. Hemker: Science Vol. 304 (2004), p.22.

Google Scholar

[32] L. Pauling: J. Am. Chem. Soc. Vol. 69 (1947), pp.542-553.

Google Scholar

[33] V. M. Goldschmidt and B. Deut: Chem. Ges. Vol. 60 (1927), pp.1263-1296.

Google Scholar

[34] C. Q. Sun: Prog. Solid State Chem. Vol. 35 (2007), pp.1-159.

Google Scholar

[35] L. Hu, R. Huo, H. Zhou, Y. Wang and S. Zhang: J. Nanopart. Res. Vol. 14 (2012), p.677.

Google Scholar