Preparation and Characterization of γ-Fe2O3-ZnFe2O4 Composite Nanoparticles

Article Preview

Abstract:

Using a chemically induced transition in an FeCl2 solution, γ-Fe2O3 nanoparticles can be prepared from an amorphous precursor composed of FeOOH and Mg (OH)2. Surface modification by adding ZnCl2 during liquid-phase synthesis was attempted. The magnetization, morphology, crystal structure, and chemical species of as-prepared samples were characterized by vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray energy-dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The experimental results showed that the surface of the γ-Fe2O3 nanoparticles can be modified by adding ZnCl2 to form composite nanoparticles with a γ-Fe2O3/ZnFe2O4 ferrite core coated with Zn (OH)2 and absorbed FeCl36H2O; this modification can be enhanced by additional NaOH.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-157

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Knobel, W. C. Nunes, L. M. Socolovsky, E. De Biasi, J. M. Vargas and J. C. Denardin, J. Nanosci. Nanotechno., Vol. 8 (2008) No. 6, p.2836.

Google Scholar

[2] S.H. Sun, Adv. Mater., Vol. 18 (2006) No. 4, p.393.

Google Scholar

[3] C.R. Lin, C.C. Wang and I.H. Chen, J. Magn. Magn. Mater., Vol. 304 (2006) No. 1, p. e34.

Google Scholar

[4] D.V. Szabó and D. Vollath, Adv. Mater., Vol. 11 (1999) No. 15, p.1313.

Google Scholar

[5] F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray and S.P. O'Brien, J. Am. Chem. Soc., Vol. 126 (2004) No. 44, p.14583.

DOI: 10.1021/ja046808r

Google Scholar

[6] L.H. Lin, J. Li, J. Fu, Y.Q. Lin and X.D. Liu, Mater. Chem. Phys., Vol. 134 (2012) No. 1, p.407.

Google Scholar

[7] M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin and V.G. Harris, Int. Mater. Rev., Vol. 49 (2004) No. 3, p.125.

Google Scholar

[8] B.L. Cushing, V.L. Kolesnichenko and C.J. O'Connor, Chem. Rev., Vol. 104 (2004) No. 9, p.3893.

Google Scholar

[9] Q.M. Zhang, J. Li, Y.Q. Lin, X.D. Liu and H. Miao, J. Alloy. Compd., Vol. 508 (2010) No. 2, p.396.

Google Scholar

[10] H. Miao, J. Li, Y.Q. Lin, X.D. Liu, Q.M. Zhang and J. Fu, Chinese Sci. Bull., Vol. 56 (2011) No. 22, p.2383.

Google Scholar

[11] B.C. Wen, J. Li, Y.Q. Lin, X.D. Liu, J. Fu, H. Miao and Q.M. Zhang, Mater. Chem. Phys., Vol. 128 (2011) No. 1-2, p.35.

Google Scholar

[12] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan and B. Jeyadevan, Physica B, Vol. 363 (2005) No. 1-4, p.225.

Google Scholar

[13] S. Tanuma, C.J. Powell and D.R. Penn, Surf. Interface Anal., Vol. 17 (1991) No. 13, p.927.

Google Scholar

[14] I. Srnová-Šloufová, B. Vlčková, Z. Bastl and T.L. Hasslett, Langmuir, Vol. 20 (2004) No. 8, p.3407.

DOI: 10.1021/la0302605

Google Scholar