Galvanostatic Deposition of PT Nanoparticles on TiO2 Nanotube Arrays for Amperometric Detection of Hydrogen Peroxide at Low Overpotentials

Article Preview

Abstract:

Highly ordered TiO2 nanotube arrays (NTAs) modified with Pt nanoparticles (Pt/TiO2 NTAs) have been prepared by anodization of Ti foils followed by electrochemical deposition and employed to improve the performance of the low-overpotential determination of H2O2 in solution. Morphologies of TiO2 and Pt/TiO2 NTAs were observed by SEM and TEM. The electrochemical behaviors of TiO2 and Pt/TiO2 NTAs were compared by cyclic voltammograms (CVs) in phosphate buffer solutions in absence and prensence of 10 mM H2O2, which showed that Pt nanoparticles can enhance the electrochemical activities of TiO2 NTAs and achieve low-overpotential determination of H2O2. Amperometric method with an applied potential of-100 mV was used for H2O2 detemination, which demonstrated a good H2O2 sensing with sensitivity of 5.4 μAcm-2mM-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-182

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Y. Zhang, L.H. Xu, J.Y. Dai, Y. Cai, N. Wang. Mater. Res. Bull., 2006, 41(9), 1729-1734.

Google Scholar

[2] Y. F. Qiu, M. L. Yang, H. B. Fan, Y. Z. Zuo, Y. Y. Shao, Y. J. Xu, X. X. Yang, S. H. Yang. Crys. Eng. Comm., 2011, 13(6), 1843-1850.

Google Scholar

[3] J.H. Richter, P.G. Karlsson, G. Westin, J. Blomquist, P. Uvdal, H. Siegbahn, A. J. Phys. Chem. C, 2007, 111(8), 3459-3466.

Google Scholar

[4] H.G. Yang, C.H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu. Nature, 2008, 453(29), 638-641.

Google Scholar

[5] J. Fang, F. Wang, K. Qian, H. Z. Bao, Z. Q. Jiang, W. X. Huang. J. Phys. Chem. C, 2008, 112(46), 18150-18156.

Google Scholar

[6] D. L. Ma, L. S. Schadler, R. W. Siegel, J. I. Hong. Appl. Phys. Lett., 2003, 83, 1839-1841.

Google Scholar

[7] Q. Zhang, L. Gao, J. Sun, S. Zheng. Chem. Lett. 2002, 2, 226-227.

Google Scholar

[8] Daoai Wang, Feng Zhou, Ying Liu, Weimin Liu. Mater. Lett., 2008, 62(12), 1819-1822.

Google Scholar

[9] L. Yue, W. Gao, D. Zhang, X. Guo, W. Ding, Y. Chen. J. Am. Chem. Soc., 2006, 128, 11042-11043.

Google Scholar

[10] A. Bozzia,T. Yuranovaa, I. Guasaquilloa, D. Laubb, J. Kiwia. J. Photochem. Photobio. A: Chem., 2005, 174(2), 156-164.

Google Scholar

[11] J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki. Small, 2007, 3(2), 300-304.

Google Scholar

[12] Q. Zheng, B. X. Zhou, J. Bai, L. H. Li, Z. J. Jin, J. L. Zhang, J. H. Li, Y. B. Liu, W. M. Cai, X. Y. Zhu. Adv. Mater., 2008, 20(5), 1044-1049.

Google Scholar

[13] K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, C. A. Grimes. Langmuir, 2007, 23, 12445-12449.

DOI: 10.1021/la7020403

Google Scholar

[14] W. Y. Gan, D. Friedmann, R. Amal, S. Q. Zhang, K. Chiang, H. J. Zhao. Chem. Eng. J., 2010, 158(3), 482-488.

Google Scholar

[15] V. Zwilling, M. Aucouturier, E. Darque-Ceretti. Electrochim. Acta, 1999, 45(6), 921-929.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[16] S. Yoriya, C. A. Grimes. Langmuir, 2010, 26, 417-420.

Google Scholar

[17] D. A. Wang, Y. Liu, B. Yu, F. Zhou, W. M. Liu. Chem. Mater., 2009, 21(7), 1198-1206.

Google Scholar

[18] M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, C. A. Grimes. J. Phys. Chem. C, 2007, 111(41), 14992–14997.

DOI: 10.1021/jp075258r

Google Scholar

[19] C. A. Grimes. J. Mater. Chem., 2007, 17, 1451-1457.

Google Scholar

[20] A. Ghicov, P. Schmuki. Chem. Commun. 2009, 2791-2808.

Google Scholar

[21] D. A. Wang, B. Yu, C. W. Wang, F. Zhou, W. M. Liu. Adv. Mater., 2009, 21(19), 1962-(1967).

Google Scholar

[22] N. K. Allam, C. A. Grimes. Langmuir, 2009, 25(13), 7234-7240.

Google Scholar

[23] K. S. Mun, S. D. Alvarez, W.Y. Choi, M. J. Sailor. ACS Nano, 2010, 4(4), 2070–(2076).

Google Scholar

[24] J. Q. Li, L. Zheng, L. P. Li, G. Y. Shi, Y. Z. Xian, L. T. Jin. Electroanalysis, 2006, 18(22), 2251-2256.

Google Scholar

[25] S. B. Adeloju, A. N. Moline. Biosens. Bioelectron., 2001, 16(3), 133-139.

Google Scholar

[26] M. Sohail, S. B. Adeloju. Electroanalysis, 2009, 21(12), 1411-1418.

Google Scholar

[27] S. B. Adeloju, A. Lawal. Intern. J. Enviro. Anal. Chem., 2005, 85(10), 771-780.

Google Scholar

[28] Joseph Wang. Chem. Rev., 2008, 108(2), 814–825.

Google Scholar

[29] X.Y. Zhang, D. Li, L. Bourgeois, H.T. Wang, P.A. Webley. Direct electrodeposition of Porous Gold Nanowire Arrays for Biosensing Applications [J], ChemPhysChem, 2009, 10(2): 436-441.

DOI: 10.1002/cphc.200800538

Google Scholar

[30] D.R. Shobha Jeykumaria, S. Ramaprabhub, S. Sriman Narayanan. Carbon, 2007, 45(6), 1340-1353.

Google Scholar

[31] A.K.M. Kafi,G. S. Wu,A.C. Chen. Biosens. Bioelectron., 2008, 24(4), 566-571.

Google Scholar