Controlled Synthesis LaPO4 Nanorods via a Hydrothermal Route

Article Preview

Abstract:

LaPO4 nanorods have been selectively synthesized via a hydrothermal route, using La (NO3)3·6H2O and NaH2PO4 as raw materials, without using any catalyst or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), IR spectra (IR) and photo-luminescence (PL) spectra were used to characterize the as-prepared samples. The morphological changes of the products due to the different mole ratios of La (NO3)3·6H2O and NaH2PO4 were studied. The effect of the thermal treatment on the structure of the LaPO4 nanorods was also investigated. In addition, the emission intensity of LaPO4 nanorods with different Eu doped concentration was compared and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-199

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.B. Bu, Y.P. Xu, N. Zhang, H.G. Chen, Z.L. Hua and J.L. Shi: Langmuir, Vol. 23 (2007) No. 17, p.9002.

Google Scholar

[2] M.J. Zhou, H.J. Zhu, Y. Jiao, Y.Y. Rao, S. Hark, Y. Liu, L.M. Peng and Q. Li: J. Phys. Chem. C, Vol. 113 (2009) No. 20, p.8945.

Google Scholar

[3] H. Kind, H.Q. Yan, B. Messer, M. Law and P.D. Yang: Adv. Mater, Vol. 14 (2002) No. 2, p.158.

Google Scholar

[4] X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang: Science, Vol. 303 (2004) No. 5662, p.1348.

Google Scholar

[5] S.P. Anthony and S.M. Draper: J. Phys. Chem. C, Vol. 114 (2010) No. 27, p.11708.

Google Scholar

[6] N. Li, K. Yanagisawa and N. Kumada: Cryst. Growth Des, Vol. 9 (2009) No. 2, p.978.

Google Scholar

[7] C.X. Li, Z. Y. Hou, C. M. Zhang, P.P. Yang, G.G. Li, Z.H. Xu, Y. Fan and J. Lin: Chem. Mater, Vol. 21 (2009) No. 19, p.4598.

Google Scholar

[8] X. Li and J. Ma: Journal of Luminescence, Vol. 131 (2011), p.1335.

Google Scholar

[9] O. Lehmann, K. Kömpe and M. Haase: J. Am. Chem. Soc, Vol. 126 (2004) No. 45, p.14935.

Google Scholar

[10] Y. P. Fang, A. W. Xu, R. Q. Song, H. X. Zhang, L. P. You, J. C. Yu and H. Q. Liu: J. Am. Chem. Soc, Vol. 125 (2003) No. 51, p.16025.

Google Scholar

[11] X.K. Hu, D.K. Ma, J.B. Liang, Q. Xie, Y.C. Zhu and Y.T. Qian: J. Phys. Chem. C, Vol. 111 (2007) No. 16, p.5882.

Google Scholar

[12] M. Yu, H. Wang, C.K. Lin, G.Z. Li and J. Lin: Nanotechnology, Vol. 17 (2006), p.3245.

Google Scholar

[13] G. Bühler and C. Feldmann: Angew. Chem. Int. Ed, Vol. 45 (2006), p.4864.

Google Scholar

[14] L. Zhu, X.M. Liu, X.D. Liu, Q. Li, J.Y. Li, S.Y. Zhang, J. Meng and X.Q. Cao: Nanotechnology, Vol. 17 (2006), p.4217.

Google Scholar

[15] G.H. Li, L.L. Li, M.M. Li, Y.H. Song, H.F. Zou, L.C. Zou, X.C. Xu and S.C. Gan: Materials Chemistry and Physics, Vol. 133 (2012), p.263.

Google Scholar