Fourier Transform Far-Infrared Reflection Spectroscopy of Ba[Zn1/3(Nb1-xTax)2/3]O3 Solid Solutions

Article Preview

Abstract:

Ba [Zn1/3(Nb1-xTax)2/3]O3 (BZNT, x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) solid solutions were synthesized by conventional solid-state sintering technique. Fourier transform far-infrared reflection spectroscopy (FTIR) and X-ray diffraction (XRD) were employed to evaluate the correlation between crystal structures and vibration modes of these solid solutions as a function of Nb5+ ions replaced by Ta5+ ions. Spectroscopic and structural data show sensitivity to the sample structural evolution with Ta5+ concentration. XRD result shows that the peaks shift to lower angle, i.e. higher d-spacing, with the increase in Ta5+content, and the lattice structures have changed from cubic structure to hexagonal structure gradually with the increase in the unit cell volume due to the substitution of Ta5+ to Nb5+. The phase transition is also verified by the FTIR spectra. The phonon modes of the vibration spectra were assigned, the position and width were determined, and the correlation of phonon vibrations with the crystal structures for the different atoms substituted in the-site was found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-321

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Diasa, V. S. T. Ciminellia, F. M. Matinagab, R. L. Moreirab, J. Eur. Ceram. Soc., Vol. 21 (2001), p.2739.

Google Scholar

[2] H. Hughes, D. M. Iddles, I. M. Reaney, Appl. Phys. Lett., Vol. 79 (2001), p.2952.

Google Scholar

[3] J. I. Yang, S. Nahm, C. H. Choi, H. J. Lee, H. M. Park, J. Am. Ceram. Soc., Vol. 85 (2002), p.165.

Google Scholar

[4] K. Fukuda, R. Kitoh, I. Awai, J. Am. Ceram. Soc., Vol. 77 (1994), p.149.

Google Scholar

[5] H. Tamura, D. A. Sagala, K. Wakino, Jpn. J. Appl. Phys., Vol. 25 (1986), p.787.

Google Scholar

[6] R. Ratheesh, M. Wöhlecke, B. Berge, Th. Wahlbrink, H. Haeuseler, E. Rühl, R. Blachnik, P. Balan, N. Santha, M. T. Sebastian, J. Appl. Phys., Vol. 88 (2000), p.2813.

DOI: 10.1063/1.1287762

Google Scholar

[7] A. Dias, L. A. Khalam, M. T. Sebastian, C. W. A. Paschoal,; R. L. Moreira, Chem. Mater., Vol. 18 (2006), p.214.

Google Scholar

[8] A. Dias, L. A. Khalam, M. T. Sebastian, M. M. Lage, F. M. Matinage, R. L. Moreira, Chem. Mater., Vol. 20 (2008), p.5253.

Google Scholar

[9] K. Wakino, M. Murata, H. Tamura, J. Am. Ceram. Soc., Vol. 69 (1986), p.34.

Google Scholar

[10] M. Poulet, J. P. Mathieu: Vibration Spectra and Symmetry of Crystals (Science Publishers, Inc., 1976).

Google Scholar

[11] F. Shi, H.L. Dong, J. Appl. Phys., 111 (2012), p.014111.

Google Scholar

[12] G. A. Smolensky, I. G. Siny, R. V. Pisarev, E. G. Kuzrninov, Ferroelectrics, Vol. 12 (1976), p.135.

Google Scholar

[13] Siny, I. G., Tao, R., Katiyar, R. S., Guo, R., and Bhalla, A. S., J. Phys. Chem. Solids., Vol. 59 (1998), p.181.

Google Scholar

[14] Nagai, T., Sugaiyama, M., Sando, M., Jpn. J. Appl. Phys, Vol. 35 (1996), p.5163.

Google Scholar

[15] Chen, Y. C., Cheby, H. F., Liu, H. L., Chia C. T., and Lin I. N., J. Appl. Phys., Vol. 94 (2003), p.3365.

Google Scholar

[16] S. Kamba, H. Hughes, D. Noujni, S. Surendran, R. C. Pullar, P. Samoukhina, J. Petzelt, R. Freer, N. M. Alford, D. M. Iddles, J. Phys. D: Appl. Phys., 2004, 37(14), p. (1980).

DOI: 10.1088/0022-3727/37/14/014

Google Scholar

[17] Nakagawa: shindo Bunkogaku (Vibrational Spectroscopy) (Gakkaishuppan-center, Tokyo, 1987) [in Japanese].

Google Scholar

[18] T. Shimada, J. Eur. Ceram. Soc., Vol. 24 (2004), p.1799.

Google Scholar