[1]
Dabade U A, Dapkekar D and Joshi S S. Modeling of chip–tool interface friction to predict cutting forces in machining of Al/SiCp composites [J]. International Journal of Machine Tools and Manufacture, 2009, 49(9): 690-700.
DOI: 10.1016/j.ijmachtools.2009.03.003
Google Scholar
[2]
Daoud A and Abou El-kahir MT. Wear and friction behavior of sand cast brake rotor made of A359-20vol%SiC particle composites sliding against automobile friction material. Tribol Int 2010; 43: 544-53.
DOI: 10.1016/j.triboint.2009.09.003
Google Scholar
[3]
Suresh Kumar Reddy N, Kwang-Sup S and Yang M. Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites [J]. Journal of Materials Processing Technology, 2008, 201(1–3): 574-579.
DOI: 10.1016/j.jmatprotec.2007.11.280
Google Scholar
[4]
Anoop S, Natarajan S and Kumaresh Bsp. Analysis of factors influencing dry sliding wear behaviour of Al/SiC brake pad tribosystem. Mater Design 2009; 30: 3831-8.
DOI: 10.1016/j.matdes.2009.03.034
Google Scholar
[5]
Rehmann A, Das S and Dixit G. Analysis of stir die cast Al–SiC composite brake drums based on coefficient of friction. Tribol Int 2012; 51: 36-41.
DOI: 10.1016/j.triboint.2012.02.007
Google Scholar
[6]
H.X. Wang, J. Yang, Z.S. Liu and W.J. Zhai. Experimental research on the tool wear during precision milling process of SiCp/Al composite materials[J]. MATERIALS SCIENCE & TECHNOLOGY, 2012, (05): 12-15. (In Chinese).
Google Scholar
[7]
X.L. Jiang, C. Lv and Z.H. Xiao. Study on Ultrasonic Vibrational Combined Cutting of SiCp/Al Composites [J]. SPACECRAFY RECOVERY & REMOTE SENSING, 2012, (05): 74-81. (In Chinese).
Google Scholar
[8]
Y.J. Yang, F.G. Li and Z.W. Yuan. The research and development of SiC particle reinforced Al matrix composites [J]. China Metal Forming Equipment & Manufacturing Technology, 2012, (06): 82-88. (In Chinese).
Google Scholar
[9]
K.X. Cui, X.H. Chang, X.P. L, P. Mo, X. Wang and S.M. Jin. Advances in Research on High Volume Fraction Aluminum Silicon Carbide Composites [J]. Materials Review, 2012, (S2): 401-405. (In Chinese).
Google Scholar
[10]
D.J. Lv. Research on AlSiC Composite Machining Technology [J]. Electro—Mechanical Engineering, 2011, (05): 29-32. (In Chinese).
Google Scholar
[11]
Pramanik A, Zhang LC and Arsecularatne JA (2006) Prediction of cutting forces in machining of Metal Matrix Composites [J]. Int J Mach Tools Manuf 46: 1795~1803.
DOI: 10.1016/j.ijmachtools.2005.11.012
Google Scholar
[12]
El-Gallab M and Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites Part II: Workpiece surface integrity [J]. J Mater Process Technol 83: 277~285.
DOI: 10.1016/s0924-0136(98)00072-7
Google Scholar
[13]
Kishawy, H. A., S. Kannan, et al. (2004). An Energy Based Analytical Force Model for Orthogonal Cutting of Metal Matrix Composites., CIRP Annals - Manufacturing Technology 53(1): 91-94.
DOI: 10.1016/s0007-8506(07)60652-0
Google Scholar
[14]
El-Gallab, M. and M. Sklad (1998). Machining of Al/SiC particulate metal-matrix composites: Part I: Tool performance., Journal of Materials Processing Technology 83(1–3): 151-158.
DOI: 10.1016/s0924-0136(98)00054-5
Google Scholar
[15]
Manna, A. and B. Bhattacharayya (2003). A study on machinability of Al/SiC-MMC., Journal of Materials Processing Technology 140(1–3): 711-716.
DOI: 10.1016/s0924-0136(03)00905-1
Google Scholar
[16]
Quan Yanming and ZHOU Zehua. Machinability of Aluminium Matrix Composites Reinforced by Different Size Particles and Their Applicable Tools[J]. Materials Science and Engineering. 1996 (04).
Google Scholar
[17]
X.X. Zhang, D. Z Wang, Z.K. Yao and M.H. Zhao. Commercialization of Discontinuously Reinforced Metal-Matrix Composites [J]. Aeronautical Manufacturing Technology. 2002(05). (In Chinese).
Google Scholar
[18]
Y.F. Ge, J.H. Xu and Y.C. Fu. Influences of T6 Heat Treatment on High-speed-milling Machinability of SiCp/Al Composites[J]. China Mechanical Engineering, 2011, 22(23): 2878-2882. (In Chinese).
Google Scholar