Efficient Production of Lactic Acid from Distillers Grains Hydrolysates by Rhizopus oryzae CICC41411

Article Preview

Abstract:

Lignocellulosic biomass-derived sugars is considered to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid (LA). The aim of this study was to investigate the possibility of LA production from distillers grains hydrolysates (DGHs) by the Rhizopus oryzae CICC41411 and to optimize the biological conversion of reducing sugar into LA to evaluate the culture conditions. The effects of factors such as nitrogen source, inoculations size, CaCO3 addition, pH value and fermentation time on the lactic acid concentration (LAC) and the reducing sugars utilization rate (RSUR) were researched. The results show that ammonium chloride is the most favorable nitrogen source for LA production by Rhizopus. Oryzae CICC41411, the optimal fermentation conditions are inoculation size of 2.5% seed culture, CaCO3 addition of 80 g·L-1, fermentation time of 96 h and culture pH of 6.0. This study provides an encouraging means of producing LA from lignocellulosic resource such as the low-cost distillers grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

689-696

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Guo, W.D. Jia, Y. Li and S.L. Chen. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics, Applied Biochemistry and Biotechnology, Vol. 161(2010)No. 1-8, pp.124-136.

DOI: 10.1007/s12010-009-8857-8

Google Scholar

[2] R.H.W. Maas, R.R. Bakker, G. Eggink and R.A. Weusthuis. Lactic acid production from xylose by the fungus Rhizopus oryzae, Applied Microbiology and Biotechnology, Vol. 72(2006) No. 5, pp.861-868.

DOI: 10.1007/s00253-006-0379-5

Google Scholar

[3] P.R.P. John, K.M. Nampoothiri and A. Pandey. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Applied Microbiology and Biotechnology, Vol. 74(2007)No. 3, pp.524-534.

DOI: 10.1007/s00253-006-0779-6

Google Scholar

[4] S. Bulut, M. Elibol and D. Ozer. Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae, Biochemical Engineering Journal, Vol. 21(2004)No. 1, pp.33-37.

DOI: 10.1016/j.bej.2004.04.006

Google Scholar

[5] Z.Y. Zhang, B. Jin and J.M. Kelly. Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources, World Journal of Microbiology and Biotechnology, Vol. 23(2007) No. 2, p.229–236.

DOI: 10.1007/s11274-006-9218-1

Google Scholar

[6] M. Ilmen, K. Koivuranta, L. Ruohonen, P. Suominen and M. Penttilä. Efficient production of L-lactic acid from xylose by Pichia stipitis, Applied and Environmental Microbiology, Vol. 73(2007)No. 1, pp.117-123.

DOI: 10.1128/aem.01311-06

Google Scholar

[7] H. Kawaguchi, M. Sasaki, A.A. Vertes, M. Inui and H. Yukawa. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum, Applied and Environmental Microbiology, Vol. 75(2009).

DOI: 10.1128/aem.02912-08

Google Scholar

[8] H. Tamakawa, S. Ikushima and S. Yoshida. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain, Journal of Bioscience and Bioengineering, Vol. 13(2012) No. 1, p.73–75.

DOI: 10.1016/j.jbiosc.2011.09.002

Google Scholar

[9] L.M. Wang, B. Zhao, B. Liu, B. Yu, C.Q. Ma, F. Su, D.L. Hua, Q.G. Li, Y.H. Ma and P. Xu. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. Strain, Bioresource Technology, Vol. 101(2010).

DOI: 10.1016/j.biortech.2010.05.031

Google Scholar

[10] O.Y. Jia, C. Cai, H. Chen and T. Jiang. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant bacillus coagulans NL01, Applied Biochemistry and Biotechnology, Vol. 168(2012)No. 8, p.2387–2397.

DOI: 10.1007/s12010-012-9944-9

Google Scholar

[11] Z.W. Xue, L.M. Wang, J.S. Ju, B. Yu, P. Xu and Y.H. Ma. Efficient production of polymer- grade L-lactic acid from corn stover hydrolyzate by thermophilic Bacillus sp. strain XZL4, Springer Plus, 2012, 1: 43.

DOI: 10.1186/2193-1801-1-43

Google Scholar

[12] L.P. Huang, B. Jin, P. Lant, et al. Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus, Biochemical Engineering Journal, Vol. 23(2005)No. 3, pp.265-276.

DOI: 10.1016/j.bej.2005.01.009

Google Scholar

[13] N. Thongchul, S. Navankasattusas and S. T Yang. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis, Bioprocess and Biosystems Engineering, Vol. 33(2010) No. 3, p.407–416.

DOI: 10.1007/s00449-009-0341-x

Google Scholar

[14] K. Saito, Y. Hasa and H. Abe. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae, Journal of Bioscience and Bioengineering, Vol. 114(2012)No. 2, pp.166-169.

DOI: 10.1016/j.jbiosc.2012.03.007

Google Scholar

[15] E.Y. Park, P. N. Anh and N. Okuda. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae, Bioresource Technology, Vol. 93(2004)No. 1, pp.77-83.

DOI: 10.1016/j.biortech.2003.08.017

Google Scholar

[16] Y.M. Zhu, Y.Y. Lee and R.T. Elander. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation, Applied Biochemistry and Biotechnology, Vol. 137–140(2007)No. 1-12, p.721–738.

DOI: 10.1007/s12010-007-9092-9

Google Scholar

[17] C. Ruengruglikit and Y.D. Hang L(+)-Lactic acid production from corncobs by Rhizopus oryzae NRRL-395, Food Science and Technology, Vol. 36(2003)No. 6, p.573–575.

DOI: 10.1016/s0023-6438(03)00062-8

Google Scholar

[18] A.L. Woiciechowski, C.R. Soccol, L.P. Ramos, and A. Pandey. Experimental design to enhance the production of L-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation, Process Biochemistry, Vol. 34(1999).

DOI: 10.1016/s0032-9592(99)00012-6

Google Scholar

[19] M. Taskin, N. Esim and S. Ortucu. Efficient production of L-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61, Food and Bioproducts Processing, Vol. 90(2012)No. 4, p.773–779.

DOI: 10.1016/j.fbp.2012.05.003

Google Scholar

[20] Y.S. Chuang, C.Y. Huang, C.H. Lay, C.C. Chen, B. Sen, and C.Y. Lin. Fermentative bioenergy production from distillers grains using mixed microflora[J]. International journal of hydrogen energy, Vol. 37(2012), No. 20, pp.15547-15555.

DOI: 10.1016/j.ijhydene.2012.01.035

Google Scholar

[21] D.M. Bai, M.Z. Jia, X.M. Zhao, R. Ban, F. Shen, X.G. Li and S.M. Xu. L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor, Chemical Engineering Science, Vol. 58(2003)No. 3-6, p.785 – 791.

DOI: 10.1016/s0009-2509(02)00608-5

Google Scholar

[22] W.Y. Yao, X. Wu, J. Zhu, B. Sun and C. Miller. Utilization of protein extract from dairy manure as a nitrogen source by Rhizopus oryzae NRRL-395 for l-lactic acid production, Bioresource Technology, Vol. 101(2010) No. 11, p.4132–4138.

DOI: 10.1016/j.biortech.2010.01.004

Google Scholar

[23] Z.Y. Zhang, B. Jin and J.M. Kelly. Production of lactic acid from renewable materials by Rhizopus fung, Biochemical Engineering Journal, Vol. 35(2007)No. 3, p.251–263.

DOI: 10.1016/j.bej.2007.01.028

Google Scholar

[24] Z.Y. Zhang, B. Jin and J.M. Kelly. Effects of cultivation parameters on the morphology of Rhizopus arrhizus and the lactic acid production in a bubble column reactor, Engineering in Life Sciences, Vol. 7(2007) No. 5, p.490–496.

DOI: 10.1002/elsc.200700002

Google Scholar

[25] M.J. Taherzadeh, M. Fox, H. Hjorth and L. Edebo. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae, Bioresource Technology, Vol. 88(2003) No. 3, p.167–177.

DOI: 10.1016/s0960-8524(03)00010-5

Google Scholar

[26] J. Sun, J. Zhu, W. Li. L-(+) lactic acid production by Rhizopus oryzae using pretreated dairy manure as carbon and nitrogen source, Biomass and Bioenergy, Vol. 47(2012)No. 12, pp.442-450.

DOI: 10.1016/j.biombioe.2012.09.011

Google Scholar

[27] M. Shigenobu, D. Lies, A. Tomohiro, H. Minako, T.J. Liu and O. Mitsuyasu. Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196, Journal of Bioscience and Bioengineering, Vol. 97(2004) No. 1, p.19–23.

DOI: 10.1016/s1389-1723(04)70159-0

Google Scholar

[28] L.P. Huang, T. Dong, J.W. Chen and N. Li. Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzae, Bioprocess and Biosystems Engineering, Vol. 30(2007)No. 2, pp.135-140.

DOI: 10.1007/s00449-006-0110-z

Google Scholar

[29] X.F. Wu, S.T. Jiang, M. Liu, L.J. Pan, Z. Zheng and S.Z. Luo. Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor, Journal of Industrial Microbiology & Biotechnology, Vol. 38(2011)No. 4, p.565–571.

DOI: 10.1007/s10295-010-0804-8

Google Scholar

[30] C.Y. Wang, C.T. Lin, D.C. Shen and C.Y. Liu. L-Lactic acid fermentation by culture of Rhizopus oryzae using ammonia as neutralizing agent, Journal of the Taiwan Institute of Chemical Engineers , In Press, Corrected Proof, Available online 24 May (2013).

DOI: 10.1016/j.jtice.2013.04.008

Google Scholar

[31] L. D Ye, X.D. Zhou, M.S.B. Hudari, Z. Li and J.C. Wu. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106, Bioresource Technology, Vol. 132(2013)No. 3, p.38–44.

DOI: 10.1016/j.biortech.2013.01.011

Google Scholar