The Preparation and Characterization of Spherical Cellulose Aerogels with Core-Shell Structure

Article Preview

Abstract:

The spherical cellulose aerogels with core-shell structure were prepared through hanging drop method in a regenerated non-polar solution. The procedures of these aerogels' preparation include solidification in the acetic acid solution to form a hydrogel, solvent exchange with t-butyl alcohol and freeze drying. The spherical cellulose aerogels were obtained with different cellulose solution concentration, and characterized with BET analysis and electron microscopy. Their density and porosity varied linearly with different cellulose content in the initial solution. And the gel shrinkage upon drying was limited to, on average, 7.3%. The density of spherical cellulose aerogel could be reached down to 0.14 g·cm-3 with high specific surface areas up to 210 m2·g-1. The mesopores' diameter of spherical cellulose aerogel at the highest peak in the size distribution curve is focus on 15nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

701-707

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.L. Liu, Q.F. Yan, D.D. Tao, et al. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydrate Polymers. Vol. 89(2012), pp.551-557.

DOI: 10.1016/j.carbpol.2012.03.046

Google Scholar

[2] S. S. Kistler. Coherent expanded aerogels and jellies. Nature (London), Vol. 127(1931), p.741.

DOI: 10.1038/127741a0

Google Scholar

[3] N. Hüsing, and U. Schubert. Aerogels-airy materials: Chemistry, structure and properties. Angewandte Chemie International Edition, Vol. 37(1998), 22–45.

DOI: 10.1002/(sici)1521-3773(19980202)37:1/2<22::aid-anie22>3.0.co;2-i

Google Scholar

[4] D. Carta M.F. Casula, A. Corrias, et al. Structural and magnetic characterization of Co and Ni silicate hydroxides in bulk and in nanostructures within silica aerogels. Chemical Materials, Vol. 21(2009), p.945–953.

DOI: 10.1021/cm8029714

Google Scholar

[5] D. Ge, L. Yang,Y. Li, and J. Zhao: Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. Journal of Non-Crystalline Solids, Vol. 355(2009), p.2610–2615.

DOI: 10.1016/j.jnoncrysol.2009.09.017

Google Scholar

[6] E. Guilminot, F. Fischer, M. Chatenet, et al. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. Journal of Power Sources, Vol. 166 (2007), p.104–111.

DOI: 10.1016/j.jpowsour.2006.12.084

Google Scholar

[7] J. Li, Y. Lu, D. Yang, et al. Lignocellulose aerogel from woodionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions, Biomacromolecules, Vol. 12 (2011), p.1860–1867.

DOI: 10.1021/bm200205z

Google Scholar

[8] R.T. Olsson, M.A.S. Azizi Samir, G. Salazar-Alvarez, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates, Nat. Nanotechnol. Vol. 5 (2010), p.584–588.

DOI: 10.1038/nnano.2010.155

Google Scholar

[9] M. Kettunen, R.J. Silvennoinen, N. Houbenov, et al. Photoswitchable superabsorbency based on nanocellulose aerogels, Adv. Funct. Mater. Vol. 21 (2011), p.510–517.

DOI: 10.1002/adfm.201001431

Google Scholar

[10] J. Zou, J. Liu, A.S. Karakoti, et al. Ultralight multiwalled carbon nanotube aerogel, ACS Nano. Vol. 4 (2010) , p.7293–7302.

DOI: 10.1021/nn102246a

Google Scholar

[11] M.L. Liu, D.A. Yang, Y.F. Qu: Preparation of super hydrophobic silica aerogel and study on its fractal structure, J. Non-cryst. Solids. Vol. 354 (2008), p.4927–4931.

DOI: 10.1016/j.jnoncrysol.2008.06.023

Google Scholar

[12] J.T. Korhonen, M. Kettunen, R.H.A. Ras, and O. Ikkala: Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents, ACS. Appl. Mater. Interfaces. Vol. 3 (2011), p.1813–1816.

DOI: 10.1021/am200475b

Google Scholar

[13] C. Aulin, J. Netrval, L. Wågberg, T. Lindström: Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter. Vol. 6 (2010), p.3298–3305.

DOI: 10.1039/c001939a

Google Scholar

[14] H. Sehaqui, M. Salajková, Q. Zhou, L.A. Berglund: Mechnical performance tail-oring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter. Vol. 6 (2010), p.1824–1832.

DOI: 10.1039/b927505c

Google Scholar

[15] F. Liebner, E. Haimer, A. Potthast, et al. Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties, Int. J. Biol. Macromol. Vol. 63 (2009), p.3–11.

DOI: 10.1515/hf.2009.002

Google Scholar

[16] R. Gavillon, T. Bustova: Aerocellulose: new highly porous cellulose pre-pared from cellulose-NaOH aqueous solutions, Biomacromolecules. Vol. 9 (2008), p.269–277.

DOI: 10.1021/bm700972k

Google Scholar

[17] R. Sescousse, A. Smacchia, T. Budtova: Influence of lignin on cellulose- NaOH–water mixtures properties and on aerocellulose morphology, Cellulose. Vol. 17 (2010), p.1137–1146.

DOI: 10.1007/s10570-010-9448-0

Google Scholar

[18] R. Sescousse, R. Gavillon, T. Budtova: Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes, Carbohydr. Polym. Vol. 83 (2011), p.1766–1774.

DOI: 10.1016/j.carbpol.2010.10.043

Google Scholar

[19] F. Liebner, E. Haimer, M. Wendland, et al. Aerogels from unaltered bacterial cellulose: application of scCO2drying for the preparation of shaped, ultra-lightweight cellulosic aerogels, Int. J. Biol. Macromol. Vol. 10 (2010), p.349–352.

DOI: 10.1002/mabi.200900371

Google Scholar

[20] A. Russler, M. Wieland, M. Bacher, et al. ADK-modification of bacterial cellulose aerogel in supercritical CO2, Cellulose. Vol. 19 (2012) , p.1337–1349.

DOI: 10.1007/s10570-012-9728-y

Google Scholar

[21] F. Liebner, E. Haimer, A. Potthast, et al. Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties. Holzforschung. Vol. 63(2009), pp.3-11.

DOI: 10.1515/hf.2009.002

Google Scholar