[1]
S.L. Liu, Q.F. Yan, D.D. Tao, et al. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydrate Polymers. Vol. 89(2012), pp.551-557.
DOI: 10.1016/j.carbpol.2012.03.046
Google Scholar
[2]
S. S. Kistler. Coherent expanded aerogels and jellies. Nature (London), Vol. 127(1931), p.741.
DOI: 10.1038/127741a0
Google Scholar
[3]
N. Hüsing, and U. Schubert. Aerogels-airy materials: Chemistry, structure and properties. Angewandte Chemie International Edition, Vol. 37(1998), 22–45.
DOI: 10.1002/(sici)1521-3773(19980202)37:1/2<22::aid-anie22>3.0.co;2-i
Google Scholar
[4]
D. Carta M.F. Casula, A. Corrias, et al. Structural and magnetic characterization of Co and Ni silicate hydroxides in bulk and in nanostructures within silica aerogels. Chemical Materials, Vol. 21(2009), p.945–953.
DOI: 10.1021/cm8029714
Google Scholar
[5]
D. Ge, L. Yang,Y. Li, and J. Zhao: Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. Journal of Non-Crystalline Solids, Vol. 355(2009), p.2610–2615.
DOI: 10.1016/j.jnoncrysol.2009.09.017
Google Scholar
[6]
E. Guilminot, F. Fischer, M. Chatenet, et al. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. Journal of Power Sources, Vol. 166 (2007), p.104–111.
DOI: 10.1016/j.jpowsour.2006.12.084
Google Scholar
[7]
J. Li, Y. Lu, D. Yang, et al. Lignocellulose aerogel from woodionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions, Biomacromolecules, Vol. 12 (2011), p.1860–1867.
DOI: 10.1021/bm200205z
Google Scholar
[8]
R.T. Olsson, M.A.S. Azizi Samir, G. Salazar-Alvarez, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates, Nat. Nanotechnol. Vol. 5 (2010), p.584–588.
DOI: 10.1038/nnano.2010.155
Google Scholar
[9]
M. Kettunen, R.J. Silvennoinen, N. Houbenov, et al. Photoswitchable superabsorbency based on nanocellulose aerogels, Adv. Funct. Mater. Vol. 21 (2011), p.510–517.
DOI: 10.1002/adfm.201001431
Google Scholar
[10]
J. Zou, J. Liu, A.S. Karakoti, et al. Ultralight multiwalled carbon nanotube aerogel, ACS Nano. Vol. 4 (2010) , p.7293–7302.
DOI: 10.1021/nn102246a
Google Scholar
[11]
M.L. Liu, D.A. Yang, Y.F. Qu: Preparation of super hydrophobic silica aerogel and study on its fractal structure, J. Non-cryst. Solids. Vol. 354 (2008), p.4927–4931.
DOI: 10.1016/j.jnoncrysol.2008.06.023
Google Scholar
[12]
J.T. Korhonen, M. Kettunen, R.H.A. Ras, and O. Ikkala: Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents, ACS. Appl. Mater. Interfaces. Vol. 3 (2011), p.1813–1816.
DOI: 10.1021/am200475b
Google Scholar
[13]
C. Aulin, J. Netrval, L. Wågberg, T. Lindström: Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter. Vol. 6 (2010), p.3298–3305.
DOI: 10.1039/c001939a
Google Scholar
[14]
H. Sehaqui, M. Salajková, Q. Zhou, L.A. Berglund: Mechnical performance tail-oring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter. Vol. 6 (2010), p.1824–1832.
DOI: 10.1039/b927505c
Google Scholar
[15]
F. Liebner, E. Haimer, A. Potthast, et al. Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties, Int. J. Biol. Macromol. Vol. 63 (2009), p.3–11.
DOI: 10.1515/hf.2009.002
Google Scholar
[16]
R. Gavillon, T. Bustova: Aerocellulose: new highly porous cellulose pre-pared from cellulose-NaOH aqueous solutions, Biomacromolecules. Vol. 9 (2008), p.269–277.
DOI: 10.1021/bm700972k
Google Scholar
[17]
R. Sescousse, A. Smacchia, T. Budtova: Influence of lignin on cellulose- NaOH–water mixtures properties and on aerocellulose morphology, Cellulose. Vol. 17 (2010), p.1137–1146.
DOI: 10.1007/s10570-010-9448-0
Google Scholar
[18]
R. Sescousse, R. Gavillon, T. Budtova: Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes, Carbohydr. Polym. Vol. 83 (2011), p.1766–1774.
DOI: 10.1016/j.carbpol.2010.10.043
Google Scholar
[19]
F. Liebner, E. Haimer, M. Wendland, et al. Aerogels from unaltered bacterial cellulose: application of scCO2drying for the preparation of shaped, ultra-lightweight cellulosic aerogels, Int. J. Biol. Macromol. Vol. 10 (2010), p.349–352.
DOI: 10.1002/mabi.200900371
Google Scholar
[20]
A. Russler, M. Wieland, M. Bacher, et al. ADK-modification of bacterial cellulose aerogel in supercritical CO2, Cellulose. Vol. 19 (2012) , p.1337–1349.
DOI: 10.1007/s10570-012-9728-y
Google Scholar
[21]
F. Liebner, E. Haimer, A. Potthast, et al. Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties. Holzforschung. Vol. 63(2009), pp.3-11.
DOI: 10.1515/hf.2009.002
Google Scholar