[1]
J. LaDou: Printed circuit board industry, International Journal of Hygiene and Environmental Health, Vol. 209 (2006) No. 3, pp.211-219.
DOI: 10.1016/j.ijheh.2006.02.001
Google Scholar
[2]
H. Richter, W. Lorenz and M. Bahadir: Examination of organic and inorganic xenobiotics in equipped printed circuits, Chemosphere, Vol. 35 (1997) No. 1, pp.169-179.
DOI: 10.1016/s0045-6535(97)00148-3
Google Scholar
[3]
A. Berbardes, I. Bohlinger, D. Rodriguez, H. Milbrandt and W. Wuth, Recycling of printed circuit boards by melting with oxidising/reducing top blowing process, EPD Congress 1997, (1997) 363-375.
Google Scholar
[4]
J. Guo, J. Guo and Z. Xu: Recycling of non-metallic fractions from waste printed circuit boards: A review, Journal of Hazardous Materials, Vol. 168 (2009) No. 2, pp.567-590.
DOI: 10.1016/j.jhazmat.2009.02.104
Google Scholar
[5]
J. Wu, J. Li and Z. Xu: Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: problems and improvements, Environmental Science & Technology, Vol. 42 (2008) No. 14, pp.5272-5276.
DOI: 10.1021/es800868m
Google Scholar
[6]
W. He, G. Li, X. Ma, H. Wang, J. Huang, M. Xu and C. Huang: WEEE recovery strategies and the WEEE treatment status in China, Journal of Hazardous Materials, Vol. 136 (2006) No. 3, pp.502-512.
DOI: 10.1016/j.jhazmat.2006.04.060
Google Scholar
[7]
H.M. Veit, A.M. Bernardes, J.Z. Ferreira, J.A.S. Tenório and C.D.F. Malfatti: Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy, Journal of Hazardous Materials, Vol. 137 (2006).
DOI: 10.1016/j.jhazmat.2006.05.010
Google Scholar
[8]
J. Li, H. Lu, J. Guo, Z. Xu and Y. Zhou: Recycle technology for recovering resources and products from waste printed circuit boards, Environmental Science & Technology, Vol. 41 (2007) No. 6, p.1995-(2000).
DOI: 10.1021/es0618245
Google Scholar
[9]
J. Guo, Y. Tang and Z. Xu: Performance and thermal behavior of wood plastic composite produced by nonmetals of pulverized waste printed circuit boards, Journal of Hazardous Materials, Vol. 179 (2010) No. 1, pp.203-207.
DOI: 10.1016/j.jhazmat.2010.02.080
Google Scholar
[10]
J. Guo, Q. Rao and Z. Xu: Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound, Journal of Hazardous Materials, Vol. 153 (2008) No. 1, pp.728-734.
DOI: 10.1016/j.jhazmat.2007.09.029
Google Scholar
[11]
R. Wang, T. Zhang and P. Wang: Waste printed circuit boards nonmetallic powder as admixture in cement mortar, Materials and Structures, Vol. 45 (2012) No. 10, pp.1439-1445.
DOI: 10.1617/s11527-012-9843-0
Google Scholar
[12]
Y. Zheng, Z. Shen, C. Cai, S. Ma and Y. Xing: Influence of nonmetals recycled from waste printed circuit boards on flexural properties and fracture behavior of polypropylene composites, Materials & Design, Vol. 30 (2009) No. 4, pp.958-963.
DOI: 10.1016/j.matdes.2008.07.004
Google Scholar
[13]
Y. Zheng, Z. Shen, C. Cai, S. Ma and Y. Xing: The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites, Journal of Hazardous Materials, Vol. 163 (2009) No. 2, pp.600-606.
DOI: 10.1016/j.jhazmat.2008.07.008
Google Scholar
[14]
Y. Zheng, Z. Shen, C. Cai, S. Ma and Y. Xing: In situ observation of polypropylene composites reinforced by nonmetals recycled from waste printed circuit boards during tensile testing, Journal of Applied Polymer Science, Vol. 114 (2009).
DOI: 10.1002/app.30695
Google Scholar
[15]
J. Guo, J. Li, Q. Rao and Z. Xu: Phenolic molding compound filled with nonmetals of waste PCBs, Environmental Science & Technology, Vol. 42 (2007) No. 2, pp.624-628.
DOI: 10.1021/es0712930
Google Scholar
[16]
J.P. Arenas and M.J. Crocker: Recent trends in porous sound-absorbing materials, Sound & vibration, Vol. 44 (2010) No. 7, pp.12-18.
Google Scholar
[17]
H. Zhou, B. Li and G. Huang: Sound absorption characteristics of polymer microparticles, Journal of Applied Polymer Science, Vol. 101 (2006) No. 4, pp.2675-2679.
DOI: 10.1002/app.23911
Google Scholar
[18]
B. Li, H. Zhou and G. Huang: A novel impedance matching material derived from polymer micro-particles, Journal of Materials Science, Vol. 42 (2007) No. 1, pp.199-206.
DOI: 10.1007/s10853-006-1052-1
Google Scholar
[19]
Z. Hong, L. Bo, H. Guangsu and H. Jia: A novel composite sound absorber with recycled rubber particles, Journal of Sound and Vibration, Vol. 304 (2007) No. 1-2, pp.400-406.
DOI: 10.1016/j.jsv.2007.02.024
Google Scholar
[20]
K.V. Horoshenkov and M.J. Swift: The effect of consolidation on the acoustic properties of loose rubber granulates, Applied Acoustics, Vol. 62 (2001) No. 6, pp.665-690.
DOI: 10.1016/s0003-682x(00)00069-4
Google Scholar
[21]
M.J. Swift, P. Bris and K.V. Horoshenkov: Acoustic absorption in re-cycled rubber granulate, Applied Acoustics, Vol. 57 (1999) No. 3, pp.203-212.
DOI: 10.1016/s0003-682x(98)00061-9
Google Scholar
[22]
R. Bartolini, S. Filippozzi, E. Princi, C. Schenone and S. Vicini: Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin, Applied Clay Science, Vol. 48 (2010) No. 3, pp.460-465.
DOI: 10.1016/j.clay.2010.02.007
Google Scholar
[23]
M. Vašina, D.C. Hughes, K.V. Horoshenkov and L. Lapčík Jr: The acoustical properties of consolidated expanded clay granulates, Applied Acoustics, Vol. 67 (2006) No. 8, pp.787-796.
DOI: 10.1016/j.apacoust.2005.08.003
Google Scholar
[24]
Y. Zheng, The fundamental research on reusing the nonmetals of waste printed circuit boards, Ph. D. thesis, Beijing University of Aeronautics and Astronautics, (2009).
Google Scholar
[25]
F. Asdrubali and K.V. Horoshenkov: The acoustic properties of expanded clay granulates, Building Acoustics, Vol. 9 (2002) No. 2, pp.85-98.
DOI: 10.1260/135101002760164553
Google Scholar
[26]
H. Benkreira, A. Khan and K.V. Horoshenkov: Sustainable acoustic and thermal insulation materials from elastomeric waste residues, Chemical Engineering Science, Vol. 66 (2011) No. 18, pp.4157-4171.
DOI: 10.1016/j.ces.2011.05.047
Google Scholar
[27]
C.N. Wang and J.H. Torng: Experimental study of the absorption characteristics of some porous fibrous materials, Applied Acoustics, Vol. 62 (2001) No. 4, pp.447-459.
DOI: 10.1016/s0003-682x(00)00043-8
Google Scholar
[28]
Determination of sound absorption coefficient and impedance in impedance tubes-part 2: transfer function method, ISO 10534-2, (1998).
DOI: 10.3403/02552411
Google Scholar
[29]
R. Maderuelo-Sanz, J.M. Barrigón Morillas, M. Martín-Castizo, V. Gómez Escobar and G. Rey Gozalo: Acoustical performance of porous absorber made from recycled rubber and polyurethane resin, Latin American Journal of Solids and Structures, Vol. 10 (2013).
DOI: 10.1590/s1679-78252013000300008
Google Scholar
[30]
R. Maderuelo-Sanz, M. Martín-Castizo and R. Vílchez-Gómez: The performance of resilient layers made from recycled rubber fluff for impact noise reduction, Applied Acoustics, Vol. 72 (2011) No. 11, pp.823-828.
DOI: 10.1016/j.apacoust.2011.05.004
Google Scholar
[31]
J. Pfretzschner and R. Mª Rodriguez: Acoustic properties of rubber crumbs, Polymer Testing, Vol. 18 (1999) No. 2, pp.81-92.
DOI: 10.1016/s0142-9418(98)00009-9
Google Scholar
[32]
Y. Okudaira, Y. Kurihara, H. Ando, M. Satoh and K. Miyanami: Sound absorption measurements for evaluating dynamic physical properties of a powder bed, Powder Technology, Vol. 77 (1993) No. 1, pp.39-48.
DOI: 10.1016/0032-5910(93)85005-t
Google Scholar
[33]
C.W. Kosten and C. Zwikker, Sound Absorbing Materials, Elsevier, (1949).
Google Scholar
[34]
Z. Han, L. Chunsheng, T. Kombe and N. Thong-On: Crumb rubber blends in noise absorption study, Materials and Structures, Vol. 41 (2008) No. 2, pp.383-390.
DOI: 10.1617/s11527-007-9252-y
Google Scholar