The Development and Application of Si-Based Quantum Dot Resonant Tunneling Diodes

Article Preview

Abstract:

The development history of resonant tunneling diodes (RTD), the principle of quantum dot resonant tunneling diodes (QDRTD), and their characteristics of exceptional negative differential resistance (NDR) of QDRTD, are briefly introduced in this paper. The typical type and the design processes of QDRTD, and recent research progress are summarized in detail. Finally, the facing problems and the future necessary development directions of QDRTD are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

737-743

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mazumder, P., et al., Digital circuit applications of resonant tunneling devices. Proceedings of the IEEE, 1998. 86(4): pp.664-686.

DOI: 10.1109/5.663544

Google Scholar

[2] Esaki L, New phenomenon in narrow germanium p-n junctions. Phys. Rev, 1958: 109-114.

Google Scholar

[3] Tsu R, Esaki L. Tunneling in a finite supurlattice. Appl. Phys. Lett., 1973, 22: 562-568.

Google Scholar

[4] Chang L L, Esaki L, Tsu R. Resonant tunneling in semicondutor double barriers. Appl. Phys. Lett., 1974, 24: 593-599.

DOI: 10.1063/1.1655067

Google Scholar

[5] Capasso F., Sen S., Beltram F. In: Sze S M ed., High Speed Semiconductor Devices. New York: Wiley, 1990: 465.

Google Scholar

[6] Tom P.E., Broekaert, Lee W, et al. Pseudomotphic In0. 53Ga0. 47As/AlAs/InAs resonant tunnel- ing diodes with peak-to-valley current ratios of 30 at room temperature. Applied Physics Lett- ers, 1988, 53(6): 1545-1547.

DOI: 10.1063/1.99951

Google Scholar

[7] Smith R.P., Allen S.T., Reddy M. et al. 0. 1µm Schottky-collector AlAs/GaAs resonant tunneling diodes. IEEE , Electron Device Letters, 1994, 15(8): 295-297.

DOI: 10.1109/55.296221

Google Scholar

[8] Lippens D, Barbier E, Mounaix P. Fabrication of high-performance AlxGa1-xAs/ InyGa1-yAs/ GaAs resonant tunneling diodes using a microwave-compatible technology. IEEE Electron Device Lett, 1991, 12( 3) : 114.

DOI: 10.1109/55.75738

Google Scholar

[9] Choi S, Lee B, Kim T, et al. A varactor-tuned MMIC VCO using InP-based RTD-HBT technology. Microwave and Optical Technology Letters, 2005, 45( 5) : 408-414.

DOI: 10.1002/mop.20838

Google Scholar

[10] Chen J, Lu J J, Pan W, et al. Observation of periodical negative differential conductivity in nanocrystalline silicon/crystalline silicon heterostructures. Nanotechnology, 2007, 18(1): 015203.

DOI: 10.1088/0957-4484/18/1/015203

Google Scholar

[11] Sun J, Li R, Zhao C, et al. Room-Temperature Observation of Electron Resonant Tunneling Through InAs∕ AlAs Quantum Dots. Electrochemical and solid-state letters, 2006, 9(5): G167-G170.

DOI: 10.1149/1.2180529

Google Scholar

[12] Luscombe J H, Randall J N, et al. Resonant tunneling quantum-dot diodes: physics, limitations, and technological prospects. Proceedings of the IEEE, 1991, 79(8): 1117-1130.

DOI: 10.1109/5.92071

Google Scholar

[13] Yakimov, A.I., et al., Interlevel Ge/Si quantum dot infrared photodetector. Journal of Applied Physics, 2001. 89(10): pp.5676-5681.

DOI: 10.1063/1.1346651

Google Scholar

[14] Kim, J.S., et al., Energy level control for self-assembled InAs quantum dots utilizing a thin AlAs layer. Applied Physics Letters, 2001. 78(21): pp.3247-3249.

DOI: 10.1063/1.1373410

Google Scholar

[15] Daming, Z., et al. The photocurrent of resonant tunneling diode controlled by the charging effects of quantum dots. in Numerical Simulation of Optoelectronic Devices (NUSOD), 2012 12th International Conference on. (2012).

DOI: 10.1109/nusod.2012.6316501

Google Scholar

[16] Kamiya, I., et al., Resonant tunneling through a single self-assembled InAs quantum dot in a micro-RTD structure. Physica E: Low-dimensional Systems and Nanostructures, 2002. 13(2–4): pp.131-133.

DOI: 10.1016/s1386-9477(01)00503-3

Google Scholar

[17] Sun, J., et al., Electron resonant tunneling through InAs/GaAs quantum dots embedded in a Schottky diode with an AlAs insertion layer. Mesoscale and Nanoscale Physics, 2006. 153(7): pp.703-706.

DOI: 10.1149/1.2202091

Google Scholar

[18] Kapteyn, C.M.A., et al., Hole and electron emission from InAs quantum dots. Applied Physics Letters, 2000. 76(12): pp.1573-1575.

Google Scholar

[19] Weilian Guo, The device and application of resonant tunneling. 2009, Beijing: Science Press. (In Chinese).

Google Scholar

[20] Imai, K., A new dielectric isolation method using porous silicon. Solid-State Electronics, 1 981. 24(2): pp.159-164.

DOI: 10.1016/0038-1101(81)90012-5

Google Scholar

[21] Yincai P. , et al., Analysis of characteristics of nc-Si: H/c-Si resonant tunneling diodes Chinese Journal of Semiconductors, 1998(08): 24-31. (In Chinese).

Google Scholar

[22] Hsu, Y.C., et al., Room-temperature observation of current bistability and fine structures in germanium quantum dots/SiO2 resonant tunneling diodes. Physica E: Low-dimensional Systems and Nanostructures, 2007. 38(1–2): pp.135-138.

DOI: 10.1016/j.physe.2006.12.043

Google Scholar

[23] Pan W., et al., Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes, Phys. Rev. B 74, 125308-(1-6) (2006).

DOI: 10.1103/physrevb.74.125308

Google Scholar

[24] Yakimov, A.I., et al., Interlevel Ge/Si quantum dot infrared photodetector. Journal of Applied Physics, 2001. 89(10): pp.5676-5681.

DOI: 10.1063/1.1346651

Google Scholar