[1]
X. Yan, Z. Lei, Silicon dioxide hollow microspheres with porous composite structure: Synthesis and characterization, Journal of Colloid and Interface Science, 362 (2011) 253-260.
DOI: 10.1016/j.jcis.2011.06.062
Google Scholar
[2]
A. Ahmed, R. Clowes, E. Willneff, H. Ritchie, P. Myers, H. Zhang, Synthesis of Uniform Porous Silica Microspheres with Hydrophilic Polymer as Stabilizing Agent, Industrial & Engineering Chemistry Research, 49 (2009) 602-608.
DOI: 10.1021/ie901213v
Google Scholar
[3]
K. Ogawa, S. Chemburu, G.P. Lopez, D.G. Whitten, K.S. Schanze, Conjugated Polyelectrolyte-Grafted Silica Microspheres, Langmuir, 23 (2007) 4541-4548.
DOI: 10.1021/la0630108
Google Scholar
[4]
S. Araki, H. Doi, Y. Sano, S. Tanaka, Y. Miyake, Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres, Journal of Colloid and Interface Science, 339 (2009) 382-389.
DOI: 10.1016/j.jcis.2009.07.024
Google Scholar
[5]
C. Zhang, T. Hou, J. Chen, L. Wen, Preparation of mesoporous silica microspheres with multi-hollow cores and their application in sustained drug release, Particuology, 8 (2010) 447-452.
DOI: 10.1016/j.partic.2010.05.012
Google Scholar
[6]
K. Yao, Y. Zhu, P. Wang, X. Yang, P. Cheng, H. Lu, ENFET glucose biosensor produced with mesoporous silica microspheres, Materials Science and Engineering: C, 27 (2007) 736-740.
DOI: 10.1016/j.msec.2006.07.011
Google Scholar
[7]
G.N. Karanikolos, N. -L.V. Law, R. Mallory, A. Petrou, P. Alexandridis, T.J. Mountziaris, Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates, Nanotechnology, 17 (2006).
DOI: 10.1088/0957-4484/17/13/007
Google Scholar
[8]
L. Yang, J. Motohisa, J. Takeda, K. Tomioka, T. Fukui, Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy, Applied physics letters, 89 (2006).
DOI: 10.1063/1.2372710
Google Scholar
[9]
S. Mandal, R.K. Singha, A. Dhar, S.K. Ray, Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering, Materials Research Bulletin, 43 (2008) 244-250.
DOI: 10.1016/j.materresbull.2007.05.006
Google Scholar
[10]
X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications, Journal of Materials Chemistry, 18 (2008) 509-522.
DOI: 10.1039/b712874f
Google Scholar
[11]
X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Application of Nanoparticles in Electrochemical Sensors and Biosensors, Electroanalysis, 18 (2006) 319-326.
DOI: 10.1002/elan.200503415
Google Scholar
[12]
S.R. Mahmoodi, B. Raissi, E. Marzbanrad, N. Shojayi, A. Aghaei, C. Zamani, Dielectrophoretic assembly of ZnO nanorods for gas sensing, Procedia Chemistry, 1 (2009) 947-950.
DOI: 10.1016/j.proche.2009.07.236
Google Scholar
[13]
J. Suehiro, H. Imakiire, S. -i. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sensors and Actuators B: Chemical, 114 (2006).
DOI: 10.1016/j.snb.2005.08.043
Google Scholar
[14]
W.J. Liu, J. Zhang, L.J. Wan, K.W. Jiang, B.R. Tao, H.L. Li, W.L. Gong, X.D. Tang, Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors, Sensors and Actuators B: Chemical, 133 (2008) 664-670.
DOI: 10.1016/j.snb.2008.03.032
Google Scholar
[15]
H. Kawamoto, K. Tsuji, Manipulation of small particles utilizing electrostatic force, Advanced Powder Technology, 22 (2011) 602-607.
DOI: 10.1016/j.apt.2010.09.001
Google Scholar
[16]
W. Liu, J. Zhu, Z. Wang, X. Tang, Fabrication and characterization of a novel wafer-level micro-electrode system for dielectrophoresis manipulation, Physica E: Low-dimensional Systems and Nanostructures, 42 (2010) 1653-1658.
DOI: 10.1016/j.physe.2010.01.020
Google Scholar
[17]
M. Cha, J. Yoo, J. Lee, Bacterial cell manipulation by dielectrophoresis on a hydrophobic guide structure, Electrochemistry Communications, 13 (2011) 600-604.
DOI: 10.1016/j.elecom.2011.03.020
Google Scholar
[18]
G.R. Ballantyne, P.N. Holtham, Application of dielectrophoresis for the separation of minerals, Minerals Engineering, 23 (2010) 350-358.
DOI: 10.1016/j.mineng.2009.09.001
Google Scholar
[19]
Z. Wang, M. Kroener, P. Woias, Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis, Sensors and Actuators A: Physical, 188 (2012) 417-426.
DOI: 10.1016/j.sna.2012.02.047
Google Scholar
[20]
H. Pohl, Dielectrophoresis, in, Cambridge University Press, US, 1978, p.350.
Google Scholar
[21]
K. -S. Chow, H. Du, Dielectrophoretic characterization and trapping of different waterborne pathogen in continuous flow manner, Sensors and Actuators A: Physical, 170 (2011) 24-31.
DOI: 10.1016/j.sna.2011.03.053
Google Scholar
[22]
R. Paul, K.V.I.S. Kaler, Theory of Electrode Polarization in Dielectrophoresis and Electrorotation, Journal of Colloid and Interface Science, 194 (1997) 225-238.
DOI: 10.1006/jcis.1997.5106
Google Scholar
[23]
N. Crews, J. Darabi, P. Voglewede, F. Guo, A. Bayoumi, An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics, Sensors and Actuators B: Chemical, 125 (2007) 672-679.
DOI: 10.1016/j.snb.2007.02.047
Google Scholar
[24]
Z.L. Fang, Production and Application of Microfluidic Chip, Chenmical Industry Press, China, (2005).
Google Scholar
[25]
L.L. Feng, W. Zhao, J.J. Tong, G.H. Yue, Preparation and Characterization of Hollow Silica Nanospheres, Advanced Materials Research, 393-395 (2012).
DOI: 10.4028/www.scientific.net/amr.393-395.240
Google Scholar
[26]
L.Z. HY Chen, BH Lan, Dielectrophoresis Response and Manipulation of TiO2 Particles, Applied Mechanics and Materials, 320 (2013) 208-213.
Google Scholar
[27]
L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods, Sensors and Actuators A: Physical, 178 (2012) 88-93.
DOI: 10.1016/j.sna.2012.02.030
Google Scholar