Dielectrophoresis Response and Manipulation of Silica and its Application to Micro/Nanosensors

Article Preview

Abstract:

In this paper, silica microspheres and several novel μm scale DEP (dielectrophoresis) micro electrode array chips were prepared. A DEP experimental system was assembled to investigate the the DEP response of silica microspheres and micrometer particles. The effects of pattern of electrodes and frequency of AC field on the manipulation of silica microspheres were analyzed. The results showed that silica microspheres were manipulated by negative DEP (nDEP) in all types of electrodes, the position of silica microspheres in the electrodes changed when the frequency was changed and the phenomenon of nDEP was more obvious at higher frequency. A gas sensor was fabricated by dielectrophoretically assembling SiO2 micrometer particles. The sensor showed good response to SO2 and NH3 gas. The measurement results confirmed DEP could be a quicker method for constructing gas sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

713-719

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Yan, Z. Lei, Silicon dioxide hollow microspheres with porous composite structure: Synthesis and characterization, Journal of Colloid and Interface Science, 362 (2011) 253-260.

DOI: 10.1016/j.jcis.2011.06.062

Google Scholar

[2] A. Ahmed, R. Clowes, E. Willneff, H. Ritchie, P. Myers, H. Zhang, Synthesis of Uniform Porous Silica Microspheres with Hydrophilic Polymer as Stabilizing Agent, Industrial & Engineering Chemistry Research, 49 (2009) 602-608.

DOI: 10.1021/ie901213v

Google Scholar

[3] K. Ogawa, S. Chemburu, G.P. Lopez, D.G. Whitten, K.S. Schanze, Conjugated Polyelectrolyte-Grafted Silica Microspheres, Langmuir, 23 (2007) 4541-4548.

DOI: 10.1021/la0630108

Google Scholar

[4] S. Araki, H. Doi, Y. Sano, S. Tanaka, Y. Miyake, Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres, Journal of Colloid and Interface Science, 339 (2009) 382-389.

DOI: 10.1016/j.jcis.2009.07.024

Google Scholar

[5] C. Zhang, T. Hou, J. Chen, L. Wen, Preparation of mesoporous silica microspheres with multi-hollow cores and their application in sustained drug release, Particuology, 8 (2010) 447-452.

DOI: 10.1016/j.partic.2010.05.012

Google Scholar

[6] K. Yao, Y. Zhu, P. Wang, X. Yang, P. Cheng, H. Lu, ENFET glucose biosensor produced with mesoporous silica microspheres, Materials Science and Engineering: C, 27 (2007) 736-740.

DOI: 10.1016/j.msec.2006.07.011

Google Scholar

[7] G.N. Karanikolos, N. -L.V. Law, R. Mallory, A. Petrou, P. Alexandridis, T.J. Mountziaris, Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates, Nanotechnology, 17 (2006).

DOI: 10.1088/0957-4484/17/13/007

Google Scholar

[8] L. Yang, J. Motohisa, J. Takeda, K. Tomioka, T. Fukui, Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy, Applied physics letters, 89 (2006).

DOI: 10.1063/1.2372710

Google Scholar

[9] S. Mandal, R.K. Singha, A. Dhar, S.K. Ray, Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering, Materials Research Bulletin, 43 (2008) 244-250.

DOI: 10.1016/j.materresbull.2007.05.006

Google Scholar

[10] X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications, Journal of Materials Chemistry, 18 (2008) 509-522.

DOI: 10.1039/b712874f

Google Scholar

[11] X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Application of Nanoparticles in Electrochemical Sensors and Biosensors, Electroanalysis, 18 (2006) 319-326.

DOI: 10.1002/elan.200503415

Google Scholar

[12] S.R. Mahmoodi, B. Raissi, E. Marzbanrad, N. Shojayi, A. Aghaei, C. Zamani, Dielectrophoretic assembly of ZnO nanorods for gas sensing, Procedia Chemistry, 1 (2009) 947-950.

DOI: 10.1016/j.proche.2009.07.236

Google Scholar

[13] J. Suehiro, H. Imakiire, S. -i. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sensors and Actuators B: Chemical, 114 (2006).

DOI: 10.1016/j.snb.2005.08.043

Google Scholar

[14] W.J. Liu, J. Zhang, L.J. Wan, K.W. Jiang, B.R. Tao, H.L. Li, W.L. Gong, X.D. Tang, Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors, Sensors and Actuators B: Chemical, 133 (2008) 664-670.

DOI: 10.1016/j.snb.2008.03.032

Google Scholar

[15] H. Kawamoto, K. Tsuji, Manipulation of small particles utilizing electrostatic force, Advanced Powder Technology, 22 (2011) 602-607.

DOI: 10.1016/j.apt.2010.09.001

Google Scholar

[16] W. Liu, J. Zhu, Z. Wang, X. Tang, Fabrication and characterization of a novel wafer-level micro-electrode system for dielectrophoresis manipulation, Physica E: Low-dimensional Systems and Nanostructures, 42 (2010) 1653-1658.

DOI: 10.1016/j.physe.2010.01.020

Google Scholar

[17] M. Cha, J. Yoo, J. Lee, Bacterial cell manipulation by dielectrophoresis on a hydrophobic guide structure, Electrochemistry Communications, 13 (2011) 600-604.

DOI: 10.1016/j.elecom.2011.03.020

Google Scholar

[18] G.R. Ballantyne, P.N. Holtham, Application of dielectrophoresis for the separation of minerals, Minerals Engineering, 23 (2010) 350-358.

DOI: 10.1016/j.mineng.2009.09.001

Google Scholar

[19] Z. Wang, M. Kroener, P. Woias, Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis, Sensors and Actuators A: Physical, 188 (2012) 417-426.

DOI: 10.1016/j.sna.2012.02.047

Google Scholar

[20] H. Pohl, Dielectrophoresis, in, Cambridge University Press, US, 1978, p.350.

Google Scholar

[21] K. -S. Chow, H. Du, Dielectrophoretic characterization and trapping of different waterborne pathogen in continuous flow manner, Sensors and Actuators A: Physical, 170 (2011) 24-31.

DOI: 10.1016/j.sna.2011.03.053

Google Scholar

[22] R. Paul, K.V.I.S. Kaler, Theory of Electrode Polarization in Dielectrophoresis and Electrorotation, Journal of Colloid and Interface Science, 194 (1997) 225-238.

DOI: 10.1006/jcis.1997.5106

Google Scholar

[23] N. Crews, J. Darabi, P. Voglewede, F. Guo, A. Bayoumi, An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics, Sensors and Actuators B: Chemical, 125 (2007) 672-679.

DOI: 10.1016/j.snb.2007.02.047

Google Scholar

[24] Z.L. Fang, Production and Application of Microfluidic Chip, Chenmical Industry Press, China, (2005).

Google Scholar

[25] L.L. Feng, W. Zhao, J.J. Tong, G.H. Yue, Preparation and Characterization of Hollow Silica Nanospheres, Advanced Materials Research, 393-395 (2012).

DOI: 10.4028/www.scientific.net/amr.393-395.240

Google Scholar

[26] L.Z. HY Chen, BH Lan, Dielectrophoresis Response and Manipulation of TiO2 Particles, Applied Mechanics and Materials, 320 (2013) 208-213.

Google Scholar

[27] L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods, Sensors and Actuators A: Physical, 178 (2012) 88-93.

DOI: 10.1016/j.sna.2012.02.030

Google Scholar