Characterization of Luminescent LTCC Composite Materials for White LED Package

Article Preview

Abstract:

Luminescent low temperature co-fired ceramic (LTCC) was prepared by sintering powders selected from BaO-TiO2-B2O3-SiO2 system with limited amount of additive (Dy3+). It was found that the optimal sintering temperature was 900°C based on the microstructure and the properties of sintering bodies, and then the major phases of the LTCC were Ba2(TiO)Si2O7 and SiO2. The experimental results indicated that the glass-ceramic possesses good yellow emission under 454nm excitation, excellent dielectric properties: εr= 13.09, tanδ<0.001 at 1 MHz. Thus, this material is supposed to be used as the LTCC substrate material for the application in white LED packaging.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

761-769

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.F. Schubert, K.K. Jong, Science 308 (2005) 1274–1278.

Google Scholar

[2] H. Roland, Y.T. Jeffrey, Phys. Status Solid A 208 (2011) 17–29.

Google Scholar

[3] H.A. Höppe, Angew. Chem. Int. Ed. 48 (2009) 3572–3582.

Google Scholar

[4] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng., R 71 (2010) 1–34.

Google Scholar

[5] J.Y. Tsao, M.E. Coltrin, M.H. Crawford, J.A. Simmons, Solid-State Lighting: Proc. IEEE. 98 (2010) 1162–1179.

DOI: 10.1109/jproc.2009.2031669

Google Scholar

[6] Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, Adv. Mater. 21 (2009) 4087–4108.

Google Scholar

[7] M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, J. Display Technol. 3 (2007) 160–175.

DOI: 10.1109/jdt.2007.895339

Google Scholar

[8] Y.H. Song, G. Jia, M. Yang, Y.J. Huang, H.P. You, H.J. Zhang, Appl. Phys. Lett. 94(2009) 0919021–0919023.

Google Scholar

[9] C.K. Chang, T.M. Chen, Appl. Phys. Lett. 90 (2007) 1619011–1619013.

Google Scholar

[10] B.V. Ratnam, M. Jayasimhadri, K. Jang, H.S. Lee, J. Am. Ceram. Soc. 93 (2010)3857–3861.

Google Scholar

[11] I.M. Nagpure, V.B. Pawade, S. Dhoble, J. Lumin. 25 (2010) 9–13.

Google Scholar

[12] M. Valant, D. Suvorov, J. Eur. Ceram. Soc. 24(2004) 1715–1719.

Google Scholar

[13] A.A. Shapiro, N. Kubota, K. Yu, M.L. Mecartney, J. Electronic Mater. 30 (4) (2001) 386–390.

Google Scholar

[14] J.H. Jean, T.H. Kuan, Jpn. J. Appl. Phys. Soc. 34 (4A) (1995) 1901–(1905).

Google Scholar

[15] J.H. Jean, J.I. Shen, Jpn. J. Appl. Phys. Soc. 35 (7) (1996)3942–3946.

Google Scholar

[16] A.A. EI-Kheshen, M.F. Zawrah, Ceram. Int. 29(3) (2003)251-257.

Google Scholar

[17] E.M. Hamzawy, A.A. EI-Kheshen, M.F. Zawrah, Ceram. Int. 31 (3) (2005)383-389.

Google Scholar

[18] J.H. Jean, T.K. Gupta, J. Mater. Res. 9 (8) (1994) 1990-(1996).

Google Scholar