Transport Properties of Two-Dimensional Electron Gas in Cubic AlGaN/GaN Heterostructures

Article Preview

Abstract:

We presented a theoretical study of the dependence of 2DEG mobility on temperature, barrier thickness, Al content, donor concentration to reveal the internal physics of 2DEG mobility in cubic AlGaN/GaNheterostructures. The 2DEG mobility is modeled as a combined effect of the scattering mechanisms including acoustic phonons, ionized impurity, dislocation, alloy disorder and interface roughness scattering.The variation of mobility results mainly from the change of 2DEG density and temperature. It reveals the dominant scattering mechanismsare dislocation and alloy disorder scattering atlow temperature.Acoustic phonons scattering becomes the major limit at 300k. Impurity scattering plays the key role when donor density rises. We find a maximum mobility with a structure of 25% Al content and 4-5nm barrier thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

777-782

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.K. Mishra,L. Shen T.E. Kazior and Y. -F. Wu, Proc. IEEE 96, 287, (2008).

Google Scholar

[2] J.Y. Duboz, Phys. Status Solidi A 176, p.5, (1999).

Google Scholar

[3] The International Technology Roadmap for Semiconductors, http: /public. itrs. net/. (2011).

Google Scholar

[4] Y.F. Wu,B.P. Keller and S. Keller, et al., Appl. Phys. Lett. 69, 1438, (1996).

Google Scholar

[5] J. Burn W.J. Schaff and G.H. Martin, et al, Solid-State Electron. 41, 247, (1997).

Google Scholar

[6] R. Gaska J.W. Yang and A. Osinsky, etal, Appl. Phys. Lett., 72, 707, (1998).

Google Scholar

[7] O. Ambacher,J. Smart and J.R. Shealy,J. Appl. Phys. 85, 3222, (1999).

Google Scholar

[8] E. Frayssinet,W. Knap and P. Lorenzini, et al, Appl. Phys. Lett. 77, 2551, (2000).

Google Scholar

[9] V. Kumar,W. Lu and R. Schwindt, et al., IEEE Electron Device Lett. 23, 455 (2002).

Google Scholar

[10] T. Palacios,A. Chakraborty and S. Rajan, et al, IEEE Electron Device Lett. 26, 781 (2005).

Google Scholar

[11] T. -H. Yu and K.F. Brennan, IEEE Trans Electron Devices 50, 315, (2003).

Google Scholar

[12] T. Sadi R.W. Kelsall and N.J. Pilgrim, IEEE Trans Electron Devices 53, 2892, (2006).

Google Scholar

[13] O. Ambacher,J. Majewski,C. Miskys and et al.,J. Phys. Condens. Matter 14, 3399, (2002).

Google Scholar

[14] H. Okumura,S. Misawa and S. Yoshida, Appl. Phys. Lett. 59, 1058, (1991).

Google Scholar

[15] S. Miyoshi,K. Onabe,N. Ohkouchi and et al.,J. Cryst. Growth 124 439 (1992).

Google Scholar

[16] D. Schikora.M. Hankeln D.J. As and et al, PhysRev. B 54 R8381 (1996).

Google Scholar

[17] D. Sun and E. Towe, Jpn. J. Appl. Phys., 33 702 (1994).

Google Scholar

[18] M. Abe,H. Nagasawa,S. Potthast and et al., IEICE Trans. Eletron. E89-C, 1057, (2006).

Google Scholar

[19] Tan I H, Snider G L, Chang L D and Hu E L 1990 J. Appl. Phys. 68 4071.

Google Scholar

[20] S.M. SZE and KWOK K. NG, Physics of Semiconductor Devices, P21.

Google Scholar

[21] Dacies J H 1998 The Physics of Low Dimensional Semiconductor(Cambridge: Cambridge University Press).

Google Scholar

[22] Ferry D K and Goodnick S M 1999 Transport in Nanostrutures (Cambridge: Cambridge University Press).

Google Scholar

[23] Jena D, GokdenS, Balkan N, ridley B K and Schaff W 2004 Semicond. Sci. Tech. 19 427.

Google Scholar

[24] Zhang Jin-Feng, MaoWei, Zhang Jin-Cheng and Hao Yue, Chinese Physics B, v17, n7, pp.2689-95, 1 July (2008).

Google Scholar